
DIGITAL SIGNAL PROCESSING AND DIGITAL SYSTEM DESIGN
USING DISCRETE COSINE TRANSFORM

Chia-Jeng Tseng and Maurice F. Aburdene

Department of Electrical Engineering
Bucknell University

Lewisburg, PA 17837

ABSTRACT

The discrete cosine transform (DCT) is an important functional
block for image processing applications. The implementation of a
DCT has been viewed as a specialized research task. We apply a
micro-architecture based methodology to the hardware
implementation of an efficient DCT algorithm in a digital design
course. Several circuit optimization and design space exploration
techniques at the register-transfer and logic levels are introduced
in class for generating the final design. The students not only
learn how the algorithm can be implemented, but also receive
insights about how other signal processing algorithms can be
translated into a hardware implementation. Since signal
processing has very broad applications, the study and
implementation of an extensively used signal processing
algorithm in a digital design course significantly enhances the
learning experience in both digital signal processing and digital
design areas for the students.

1. INTRODUCTION

In electrical and computer engineering, digital signal processing
and digital design are two important and closely related areas.
Digital signal processing is devoted to the theory and applications
of Fourier transforms. Common applications include image and
speech processing. Digital design studies the issues in Boolean
algebra, logic optimization, and digital implementation.
Instruction in these two subjects is generally offered
independently. We believe that the integration of signal
processing techniques and digital design methodologies
profoundly enhances students’ learning effectiveness and
instructors’ teaching experience [4].

The DCT has been widely adopted in digital signal processing
applications such as image compression and speech processing.
The hardware design of the DCT is considered to be a specialized
research topic [2, 3, 6]. We believe that the hardware
implementation of a DCT algorithm is a valuable component for
learning digital design.

A micro-architectural model, which defines a digital circuit as a
data part and a control part, is a powerful concept for

implementing a digital design. This model has been extensively
used to automate the design of digital circuits in the field of high-
level synthesis [7].

The methodology was used in an “Advanced Digital Design”
course for electrical engineering seniors and graduate students.
The lectures focused on VHDL, logic optimization, and high-level
synthesis. The three-hour weekly laboratory emphasized the
design and implementation of the DCT and two other projects
using a field-programmable gate-array (FPGA) board [8].

In the following sections, we describe how we apply general
digital design methodologies to the implementation of an efficient
DCT. Various methods for teaching students about system
partitioning, design integration, design space exploration are also
discussed in detail.

The paper is organized as follows. Section 2 describes a recursive
DCT algorithm. Section 3 discusses the methods of generating a
micro-architectural implementation of the algorithm. The issues
of various design considerations for further optimization and
design space exploration are addressed in Section 4. Section 5
presents the techniques for testing and debugging a design.
Finally, Section 6 summarizes the lessons and conclusions from
this study.

2. A DCT ALGORITHM

A DCT maps a set of sampling data in the time or space domain
into a corresponding set of data in the frequency domain.
Extensive research shows that high compression ratio can be
obtained for image data in the frequency domain. Let x and Y
represent the sampling data in the space or time domain and the
transformed data in the frequency domain, respectively. Also, let
N be the number of data points. Equation (1) and Equation (2)
define the recursive DCT algorithm described in [1]. Equation (1)
is used to determine the aN-1 and aN-2 for each k; the range of k is
from 0 to N-1. Equation (2) is for calculating Y(k).

V - 5570-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

., ..., N-,for i

ixaaa

aa

iiki

110

)()cos(2

0

21

12

=
+−=

==

−−

−−

θ
(1)

[]212
cos)1(

2
)(−− −��

�

�
��
�

�−= NN
kk

k aa
N

kY
θγ (2)

The remaining parameters in Equations (1) and (2) are defined as:

., ..., N-,for k
N

k
k

., ..., N-,for kk

110

1211
2

1
0

==

==

=

πθ

γ

γ

3. BUILDING A MICRO ARCHITECTURAL DESIGN
FOR DCT

Equation (1) and Equation (2) are expressed as a procedure shown
in Figure 1 for direct hardware implementation. The expressions
in the bold phase show the control flow. The computation of the
first two terms is instantiated. At the beginning, a0 and a1 are
stored in ai-2 and ai-1, respectively. The remaining part is kept in
the inner loop. The outer loop specifies the computation of the Y
data set.

()
}

}

{

do1-Nto2ifor

{

do1-Nto0k

;212
cos)1(

2

);(21)]cos(2[

;cos)0(2)1(1

);0(0

−−−�
�

	

�

�
�
�

�
�
�

�−=

+−−−=

=

�
�

�
�
�

�+=

=

=

NaNa
N

kk
kN

Y(k)

ixiaiakia

N
xxa

xa

for

πγ

θ

π

Figure 1: DCT Algorithm

Having transformed the original algorithm into a form suitable for
hardware implementation, we make the following high-level
design decisions.

• Scheduling
One consideration for maximizing parallelism is to unroll the
for loops. Since the computation of each iteration in the

inner loop depends on the results of the two previous
iterations, we decided to leave the loop structure intact.
Also, we assume that N is equal to eight for processing 8x8
image blocks.

• Data path design
Based on the above procedural description, the modules
needed in the data paths include multipliers, a-coefficients
generators, and Y-generators. Registers, arithmetic and logic
units, and interconnections are required to build the data
paths. The registers are labeled as ai-2, ai-1 and ai.
Additional registers labeled temp1 and temp2 are introduced
to serve as buffers for computation. The data operators
required for computing the a-coefficients include a
multiplier, a subtractor, and an adder. Each data transfer
infers an interconnection variable. Various design styles for
the synthesis of interconnection units may be considered.
For example, in the multiplexer style, the interconnections
with the same destination are combined into a multiplexer.
In the bus style, the interconnections sharing common
sources and/or destinations are merged to generate a bus
structure. The interconnections shown in Figure 2 are either
in the form of a wire or a multiplexer. The clique-
partitioning procedure described in [7] is applied to the
synthesis of these data path components. The data paths of
the Y-generator, shown in Figure 3, are synthesized by the
same method.

• Controller design
In addition to the normal sequential state transitions, there
are two nested loops in the algorithmic description. The
inner and outer loops calculate the a-coefficients and the Y-
outputs, respectively. As depicted in Figure 4, these two
loops are embedded in the state transition diagram. A strobe
signal is included in the state transition diagram for initiating
the DCT. For clarity, several states are sometimes merged
into a single oval in Figure 4. A symbolic state transition
table may be directly derived from the state transition
diagram. The fundamental difference between a Moore
model and a Mealy model is analyzed and compared. In
addition, the students are encouraged to apply multiple-code
state assignment to prevent the controller from entering an
undefined state.

• Implementation technology
An FPGA board was chosen as the target technology for
implementing the hardware due to its convenience and low
cost [9].

So far a top-down approach has been applied to produce the
global structure of the final design. Alternative global structures
can be generated by exploring different schedules of the events.
In the next section, we will discuss design tradeoffs for each
building block.

4. ADDITIONAL CONSIDERATIONS

Many design alternatives are often available for a component such
as a multiplier and multiplexer. Typical tradeoffs include the
following:

V - 558

➡ ➡

Figure 2: a-Coefficients Data Paths

Figure 3: Y-Generator Data Paths

• Data representation
The data representation is the major source of quantization
and other residual errors. These errors are a major concern
for digital signal processing [5]. An assignment for the
students is to investigate the impact of the following issues.
• The number of bits used to represent the input and

output data, the coefficients, the constants, and
intermediate buffers.

• The position of binary point for each representation.
• The ways of handling arithmetic operations.

Typical selections include one’s complement, two’s
complement as well as sign and magnitude. Generally
speaking, two’s complement is convenient for addition
and subtraction while sign and magnitude is suitable for
multiplication.

• Implementation options
There are different ways of implementing some of the
functional components. For example, a multiplier may be

Figure 4: Control Flow for a-Coefficients and
Y-Output Generators

implemented as a combinational logic or a sequential circuit.
An accumulator is required if a multiplier is implemented as
a sequential circuit; the organization of the accumulator will
then arise. In some cases, the students may study the
implications of a normal implementation and a pipeline
design. The constants may be realized as a memory block or
directly tied to ground or power source. If a memory is used,
there may be a tradeoff between single-port and dual-port

*

+

_

ai-1

x-array

cosine-array

2cos
�

k

x(i)

ai-2

ai

mux

temp1

temp2

i = 1;
extract 2 cos(

�
k)

k = k + 1

dct_done = 0

dct_done= 1
S25

_
aN-1

aN-2

*

dif

2cos(
�

k/2)/N table

Y0(k)

-Y0(k)

mux Y(k)

cosbuf

S1

S2

(strobe = 1)

S3-S5

S6
initiate

a2 = temp1 + temp2;

S7-S13
a0 = a1 ; a1 = a2;

S14

dif = a2 –a1;

Y0(k) = [2cos
�

k] * dif
S15-S18

S20-S23 Y (k) = Y0(k)
write memory

(i < N – 1)

(i >= N – 1)

S19
if (k=odd)

Y0(k) = -Y0(k)

a0 = 0; a1 = x(0);
read x(i)

S0

S24

(k <= N-1)

k = 0
(strobe = 0)

i = i + 1

extract 2 cos(
�

k)

temp2 = x(i) – a0

temp1 = [2cos
�

k] * a1 ;

V - 559

➡ ➡

memories. If an input to a logic gate is tied to ground or
power source, one may address the effectiveness of using
constant propagation for logic minimization.

• Clocking and event schedule
The number of clock signals, the frequency of each clock
signal, and the schedule of these clocks and other circuit
events are all important issues in digital design. At Bucknell
University, we are investigating efficient clocking and event
schedules to endure seamless subsystem coordination and to
improve system performance [8].

• Interface protocols
Various interface methods including direct coupling, polling,
and handshaking are addressed. The design of a task
dispatcher and inter-module coordination schemes are
discussed.

• VHDL coding
In VHDL, a digital design may be described in several
different styles including dataflow, behavioral, structural,
and mixed styles. Students investigate these styles and their
impact on the final implementation.

• Clock generation
The methods of deriving clock signals with different
frequencies and proper duty cycles as well as how to
generate these clock signals are often overlooked by
students. The students are reminded of the importance of
these issues.

• Input, output, and inter-module interface
DIP switches and push-buttons as well as light-emitting-
device (LED) displays are readily available on the FPGA
boards [9]. Students study various methods for effectively
handling these input and output devices. Some methods
focus on innovative approaches for capturing input data. For
example, it is not possible to directly enter a three-digit
decimal number on an FPGA board that we use. We instruct
the students to design a circuit to display the ten decimal
digits at low speed so that the displayed value can be
observed. A push-button switch is then used to select the
desired digit. The other alternative is to generate and display
the ten decimal digits through a push-button switch. A
second push-button switch is then used to select the desired
number. These methods of capturing a decimal digit is
repeated for the one’s, the ten’s and the hundred’s digits.
Also, several methods for eliminating or properly handling
switch bouncing problems are hinted to the students.

Once the structures of all the building blocks are determined, the
interface must be specified. The state transition diagram may also
need to be refined. The students learn the essence of incremental
and iterative designs.

5. TESTING AND DEBUGGING

Students are requested to perform functional simulation on their
VHDL descriptions. Individual components are tested using the
input and output devices available in an FPGA board before they
are integrated into a larger system. The input and output devices
on the FPGA boards are used to facilitate control flow testing.
Checkpoints are inserted in the control flow to verify state
transition and intermediate results produced by the data paths.

This comprehensive testing approach based on control flow
tracing is very effective for isolating design errors.

6. CONCLUSION

The DCT provides a rich set of tradeoffs for students to explore,
including the selection of data width, the positioning of binary
points, alternative methods for input data capture and output data
display. Studying a DCT algorithm and using it as a vehicle for
teaching digital system design, students are able to relate the
theory and applications in digital signal processing with its
hardware implementation. The methods of transforming an
algorithm into a hardware implementation provide students with a
concrete illustration in how a design can be produced. Because
the approach is systematic, most students are able to produce a
working design. Also, this methodology is applicable to the
design of other computer algorithms, including the inverse
Fourier transforms.

7. REFERENCES

[1] M. F. Aburdene, J. Zheng, and R. J. Kozick, “Computation
of Discrete Cosine Transform Using Glenshaw’s Recurrence
Formula,” IEEE Signal Processing Letters, Vol. 2, No. 8, pp.
155-156, August 1995.

[2] P. G. Fernandez, A. Garcia, J. Ramirez, L. Parrilla, and A.
Lloris, “A New Implementation of the Discrete Cosine
Transform in the Residue Number System,” Proceedings of
The Thirty-Third Asilomar Conference on Signals, Systems,
and Computers, Vol. 2, pp. 1302-1306, 1999.

[3] S. F. Hsiao, W. R. Shiue, and J. M. Tseng, “Design and
Implementation of a Novel Linear-Array DCT/IDCT
Processor with Complexity of Order log2N,” IEE
Proceedings on Vision, Image, and Signal Processing, Vol.
147, No. 5, pp. 400-408, October 2000.

[4] K. A. Kotteri, A. E. Bell, and J. E. Carletta, “Quantized FIR
Filter Design: A Collaborative Project for Digital Signal
Processing and Digital Design Courses,” Proceedings of the
2004 ASEE Annual Conference & Exposition, Session 3232.

[5] A. V. Oppenheim and R. W. Schafer, “Discrete Time Signal
Processing,” Prentice-Hall, Inc., 1989.

[6] R. Scrofano, J. W. Jang, and V. K. Prasanna, “Energy-
Efficient Discrete Cosine Transform on FPGAs,”
Proceedings of The 2003 International Conference on
Engineering of Reconfigurable Systems and Algorithms, pp.
215-221.

[7] C. J. Tseng and D. P. Siewiorek, “Automated Synthesis of
Data Paths in Digital Systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. CAD-5, No. 3, pp. 379-395, July 1986.

[8] C. J. Tseng, “Clocking Schedule and Writing VHDL
Programs for Synthesis,” Proceedings of The 2004 ASEE
Annual Conference & Exposition, Session 1532.

[9] Xess Corporation, XSA Board V1.1, V1.2 User Manual,
Apex, North Carolina 27502, 2002.

V - 560

➡ ➠

