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ABSTRACT
In this paper, we present the format of a graduate course
in digital communications fostering course projects, active
student participation, and communication among students.
We illustrate how electrical engineering students show in-
creased interest in theoretical mathematical concepts, if mo-
tivated by a design problem, and are actually able to im-
prove the performance of a state-of-the-art software pack-
age.

1. INTRODUCTION
During their first industry appointment, electrical engineers
generally face the experience of a large gap between con-
cepts learned in class and the complexity of the system de-
sign, they get involved in. In addition to understanding the
overall system, their part in it, and its interfaces, they simul-
taneously struggle with new software packages, communi-
cating and collaborating with new colleagues, and catching
up with all the special terms and abbreviations used in the
industrial environment.

Advanced graduate courses in digital signal processing
and communications try to close this gap by offering topics
such as wavelet based image compression, spread spectrum
communications, multicarrier modulation, and audio com-
pression to the curriculum. Traditional teaching methods
using blackboard, slides, and software presentations allow
the instructor to explain these complicated systems and de-
signs in form of block diagrams followed by a detailed dis-
cussion of each building block, and the demonstration of the
algorithm using a software package. The students, however,
are placed in the passive role of digesting the given infor-
mation and memorizing it for in-class tests. Neither their
problem solving skills nor their communication skills are
challenged. Many of them do not really understand the de-
sign details and remember the course as one ”that involved
a lot of nasty math”.

† This work was performed as a graduate student participating in the
Dual Master’s Degree Program between Texas Tech University and the
Technical University of Denmark.

In this paper we present a project oriented approach to
teach such courses and show how the outcome of such a stu-
dent project can actually impact the performance of a state-
of-the-art software package.

2. PROJECT ORIENTED COURSE WORK
In this section, we describe a teaching format aiming at hav-
ing students experience a more engineering like environ-
ment and boosting their creativity, enthusiasm, team work,
and problem solving skills.

2.1. Course Format
The three credit hour course on “Topics in Advanced Com-
munications” offered as part of the Electrical Engineering
Graduate Program at Texas Tech University was split into
three terms of one month each. During each term, a differ-
ent communications system was studied. At the first class
meeting, the instructor, who is the second author of this pa-
per, presented a list of possible topics such as CDMA, blind
equalization, OFDM, DMT, etc., and students were adding
their ideas. Each student then casted votes for his/her fa-
vorite three topics and the three most popular ones were
chosen as course topics. Also, the class discussed differ-
ent options to implement the final system in software or
hardware and decided that MATLAB [1] with its toolboxes
provided a good tool, since it is a state-of-the-art software
package that is widespread in industry and allows fast sys-
tem design thanks to its built-in functions. It was interesting
to note that many new international graduate students were
not familiar with MATLAB and had never used this tool be-
fore.

A general system introduction for each topic was given
by the instructor. Next, the system was broken down into
subsystems with well defined interfaces suitable for groups
of 2-3 students to implement. This approach enables the
students as a class to cover larger and more complex sys-
tems and projects, while at the same time allowing students
to diversify and form groups based on individual interests.
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Since the project topics were new to the students, it enabled
them to look at the task at hand with new eyes. At the end of
the term, the groups had to join their subsystems to obtain a
functioning system.

To keep students interested in other groups designs, par-
tial project credit was given for the functionality of the over-
all system. Also, students knew that the test at the end of the
term would contain questions regarding all subsystems and
designs.

Students were asked to team up with different class-
mates for each project. This forces students of all national-
ities to work together and communicate with each other. In
addition, it facilitates a more fair grading procedure since
weak or lazy students cannot hide behind the work of the
same strong students for all projects. At the same time, this
procedure simulates a more realistic working environment
where you cannot choose your colleagues. Each topic was
graded based on the students’ design, the quality of the pre-
sentation they gave in order to explain their subsystem to
their classmates, and the results of a take-home test and an
in-class test, evaluating individual student’s problem solv-
ing skills and system understanding.

2.2. Classroom Setting

Class meetings were used to gather and discuss information
sources found by students during their research of the topic,
make these sources available to all groups at the teaching
website, discuss the groups’ progresses or difficulties, clar-
ify interfaces, and explain theoretical aspects of possible al-
gorithms, their possible performance, computational cost,
and real-time requirements. Students were experiencing a
classroom environment, where they could openly ask ques-
tions, were expected to participate in problem solving dis-
cussions, and had to explain their designs to classmates. The
success of the overall project depended on all students.

Students who were involved in the design of a subsys-
tem that was discussed in a class meeting had to explain
its purpose, design aspects, and algorithms. Since the rest
of the students had to understand the subsystem in order to
pass the test, they were more alert and critical than in normal
student project presentations, where the audience in general
shows only a moderate interest in the outcome of the other
projects. Presenting students experienced the challenge of
clearly explaining a subsystem to their classmates.

The role of the instructor was mainly to direct discus-
sions, ask critical design questions not thought of by the
students, ensure understanding of the topic for all groups,
help students with problems or verify proposed solutions,
and clarify students presentations where they were unbal-
anced or wrong. In addition, the instructor explained the
core subsystems and algorithms of the system with the nec-
essary theoretical depth.

2.3. Outcome
While traditional teaching requires the instructor to prepare
the course material and think about its presentation form
in advance, the described course format included a large
teaching-on-demand component. While having a broad idea
about the topics that should be covered during certain class
meetings, the instructor never knew what questions would
arise in relation to the design projects. It thus required a
profound knowledge of the topic from the instructor. Never-
theless, it was inevitable, that the instructor sometimes was
unable to answer a question. The approach taken in this
course was to take the question as a homework assignment
for the class and the instructor in order to solve it for the
next class meeting. Students thus experienced that they had
acquired a level of knowledge and critical thinking, that en-
abled them to ask nontrivial questions, which increased their
self-esteem and prepares them for creative research. Also,
since the answer to their questions was often crucial to their
project design, they experienced the difficulty that some-
times arises in solving a problem statement. As opposed to
a problem statement in a homework assignment, there was
not the alternative to simply skip it.

The experiences from the course are, that students find
the use of real-life case studies and applications for in-class
theory more inspiring and rewarding than through synthetic
problems and projects. Compared to a stand-alone pure lab-
oratory course, the chosen format ensures synchronization
between theoretical background material and practical de-
sign. Students actually appreciated the concepts and theory
that were taught since it helped them in improving their de-
sign. Facing new problem statements and trying to solve
them with already acquired knowledge can often lead to al-
ternative solutions, which are radically different than what
is commonly used, and in some cases innovations and/or
improvements over existing performance, as will be shown
in the remaining part of this paper. By the end of the term,
all students evaluated the quality of the course with 5 out of
5 possible points.

3. PRIMITIVE POLYNOMIALS
A polynomial p(x) of order n over a Galois Field GF(q) is
defined as [3]

p(x) = xn + αn−1x
n−1 + . . . + α1x + α0, (1)

where the coefficients αi are members of GF(q), i.e. in-
tegers ranging from 0 to q − 1. The polynomial is called
irreducible in GF(q) if p(x) cannot be factored into a prod-
uct of lower-degree polynomials. An irreducible polyno-
mial p(x) ∈ GF(q) of degree n is said to be primitive if the
smallest positive integer l for which p(x) divides c(x) =
xl − 1 is l = qn − 1.

The use of primitive polynomials over Galois Fields is
widely spread in digital communications applications rang-
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ing from generation of pseudo-noise sequences, generator
polynomials for forward error-correction block codes and
convolutional codes, to spreading functions for CDMA sys-
tems. The polynomial can be easily implemented as weights
for an autonomous linear feedback shift register (ALFSR),
creating the pseudo-random sequence at the shift register
output. When discussing CDMA as a topic of the course,
students were therefore asked to prove that the short code
used in CDMA [2] actually is a primitive polynomial over
GF(2).

3.1. Standard Identification Procedure
The definition of primitive polynomials over GF(q) is eas-
ily converted into a stepwise procedure for the polynomial
p(x) with order n:

1. Is the polynomial p(x) irreducible?

Check that it cannot be divided by any polynomial
over GF(q) of order 1 < m ≤ �√n� without remain-
der

2. Is the irreducible polynomial primitive?

Divide c(x) = xl −1 by p(x) for all l ∈ N < qn −1,
and check that all divisions have remainders.

Step 1 is relative basic. In fact, it is sufficient to check
only primitive polynomials of lower order, if available, or
one can apply Berlekamp’s reducibility criterion [5].

Step 2, however, is more complex. The straight forward
approach for solving step 2 is a direct implementation of the
definition by constructing test polynomials c(x) = xl − 1
for increasingly higher orders l and determining the remain-
der rl(x) = c(x) mod p(x). This is done for each iteration
from l = n to l = qn − 2, unless rl(x) = 0 is encountered.
A break is triggered in the event of an even division, and
the polynomial is classified as non-primitive. The core loop
is shown in MATLAB notation below, where gfdeconv
is a function of MATLAB’s Communications Toolbox and
performs the polynomial division (note that gfdeconv ex-
pects polynomial coefficients to be entered into vectors in
ascending order).

for l = n:(qˆn-2)
c = [q-1 zeros(1,l-1) 1];
[quotient,remainder] ...

= gfdeconv(c,p,q);
if remainder == 0

% polynomial not primitive
break;

end;
end;

For the CDMA example, the polynomial over GF(2)
generating the short code is of order 15. All students started
off by implementing the above procedure and then ran the

simulation. In doing so, they quickly found that the compu-
tational complexity was too high to obtain results within a
reasonable time frame.

The computational cost of determining the remainder of
c(x)/p(x) is O(l), i.e. it increases linearly with the degree
l of c(x). Using

qn−1∑

l=n

l =
qn(qn − 1)

2
− n(n − 1)

2
=

q2n − qn − n2 + n

2

to account for the for-loop we obtain the complexity of the
implementation as O(q2n). For the short-code polynomial
over GF(2) in CDMA the overall complexity is thus given
by O(230) ≈ 109.

Realizing that this implementation is computationally
too expensive, students then looked at functions available
in the MATLAB Communications Toolbox and realized that
gfprimck(p,q) performs the required task for them.
However, the way gfprimck is implemented in MATLAB’s
Communications Toolbox 2.1 [1] is exactly the approach
described above, thus using this function did not result in
any speed increase. Subsequently, most students decided to
simply scale down the problem statement to a toy example,
where the polynomial p(x) was a primitive polynomial of
order 3 and the students were able to show the correct func-
tionality of their MATLAB function within feasible time.
Others, however, were challenged by the problem statement
and thought of different ways to speed up the procedure.
The first author of this paper finally came up with a solution
that is of order O(qn), which will be presented next.

3.2. Optimized Procedure

Reformulating step 2 of the primitive polynomial definition
enables a more efficient use of intermediate results from the
previous iterations and reduces the computational cost to
one division by p(x) per iteration.

The modification proposed is to replace step 2 with a
check whether xl/p(x) results in a remainder rl(x) �= 1 for
all n ≤ l < qn − 1 and in a remainder of 1 for l = qn − 1.
Using modulus arithmetic, one can easily verify that this is
identical to the original expression. The resulting procedure
now becomes very similar to performing polynomial divi-
sion by hand, starting out with only the highest order coef-
ficients of the numerator. The remainder is then combined
with the next lower order coefficient, and the next iteration
can start. Figure 1 shows this for a third order polynomial
p(x) = x3 + x + 1 in GF(2) and l = 4 through 6.

If the remainder rl(x) at iteration l is known, then the re-
mainder for the next iteration can be obtained as (x · rl(x))
mod p(x) instead of xl+1 mod p(x). The corresponding
MATLAB code for this new procedure is given below.
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Fig. 1. Polynomial division

c = [zeros(1,n) 1];
for l=n:(qˆn-1)

[quotient,remainder] ...
= gfdeconv(c,p,q);

if remainder == 1
% polynomial not primitive
break;

else
remainder(n+1) = 0;
c = [0 remainder(1:n)];

end;
end;

Note that although the polynomial division is once again
inside a for-loop, this procedure reduces the degree of the
numerator polynomial used for all iterations to a maximum
of n. It thus keeps the computation per iteration constant to
one polynomial division step. It results in a total computa-
tional cost of O(qn), i.e. O(215) = 32768 for the assigned
project.

The above computational complexity estimates are bas-
ed solely on the expected number of computations and do
not take memory allocation and use into consideration. The
optimized procedure is also more efficient in this regard,
as it does not need large arrays associated with high order
polynomial divisions.

4. IMPACT
Impressed by the reduction in computational complexity ob-
tained through the new method, the authors performed two
steps. Since none of them is a specialist in Galois field
arithmetic, they further researched the topic and found that
their approach was not new but was already stated in [3].
They also learned about further methods to reduce the over-
all computational cost from [4, 5]. In addition they con-
tacted The MathWorks to inform them about the improve-
ments they have made compared to the gfprimck func-
tion in the MATLAB Communications Toolbox. The Math-
Works performed extensive benchmark testing of the im-
proved function and will replace their current gfprimck
by the optimized one in the next release of their Communi-
cations Toolbox.

5. CONCLUSION
Using course projects as a key component in a graduate
course – in addition to traditional teaching methods – has
shown to provide several advantages, but selecting suited
project topics is crucial. The described course form can
be more demanding for both students and instructor, requir-
ing more interaction and participation on the students’ part
and teaching-on-demand for the instructor. The benefits ob-
served are improved critical thinking and communication
skills among students, as well as a boost in their selfconfi-
dence in becoming good practical engineers. Because the
topics are often new to the students, they are more likely
to go new ways and come up with innovative solutions; the
presented project work is in fact able to outperform a state-
of-the-art software package.
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