
TTSBOX: A MATLAB TOOLBOX FOR TEACHING TEXT-TO-SPEECH

SYNTHESIS

Thierry Dutoit

FPMs - Faculté Polytechnique de Mons
TCTS Lab, MULTITEL Building

1 Avenue Copernic, B-7000 Mons Belgium

Miloš Cerňak

Institute of Informatics
Slovak Academy of Sciences

Dúbravská 9, 84507 Bratislava Slovakia

ABSTRACT

The paper presents a new toolbox for teaching TTS syn-
thesis. TTSBOX performs the synthesis of Genglish (for
”Generic English”), an imaginary language obtained by re-
placing English words by generic words. Genglish therefore
has a rather limited lexicon, but its pronunciation maintains
most of the problems encountered in natural languages.
TTSBOX uses simple data-driven techniques (Bigrams, CA-
RTs, NUUs) while trying to keep the code minimal, so as
to keep it readable for students with reasonable MATLAB
practice. TTSBOX was designed with the hope that it can
help to increase the personal involvment of undergraduate
and graduate students in their TTS courses.

1. INTRODUCTION

Text-to-Speech synthesis is a complex combination of lan-
guage processing, signal processing, and computer science.
Students are therefore usually introduced to it in a top-
down approach, emphasizing problems to be solved and in-
troducing solutions on paper, but with little real practice :
designing a TTS takes too much time, and modifying one
is usually impossible if you did not take part in its design
(yet only if it was correctly documented). Apart from the
FESTIVAL TTS system [1], which uses SCHEME as an
interactive language for letting students play with TTS ba-
sics, no real ”hands on” toolbox was available, especially
for engineering students (who are most often familiar with
MATLAB).

TTSBOX performs synthesis of Genglish (for ”Generic
English”). Genglish is defined here as ”English in which all
the words belonging to open classes (i.e. classes of words
whose number of elements is constantly expanding : verbs,
nouns, adjectives, and adjectival adverbs) are replaced by
a generic substitute”. Apart from these substitutions, the
syntax and pronounciation of Genglish is assumed to be
that of English. It will also be assumed, in order to avoid
the need for a preprocessor, that Genglish has no abrevia-
tions, no arabic nor roman numbers, and no acronyms. For
a deeper examination of Genglish sentences, we have cre-
ated a MATLAB corpus file containing a set of 50 Genglish
sentences (about 800 words) in which each word is listed
with its spelling, part-of-speech category, and phonetiza-
tion. This file also contains a smaller test corpus (24 sen-
tences; about 400 words), which will be used later.

Although Genglish is lexically much simpler than En-
glish (and practically looses most of its semantics), it main-
tains a lot of its phonetic, syntactic, and prosodic complex-
ity. In particular, Genglish is lexically ambiguous (even
more than English), since verbs and nouns can have the
same spelling (but different pronunciations). Genglish is
much simpler than English, in that it is a language with
a closed lexicon: the list of its words is limited, once and
for all. In contrast, the set of Genglish sentences is infi-
nite. This will make our TTS design task much simpler,
while keeping one of the major challenges of the synthesis
of open lexicon languages : that of naturalness.

In section 2 we outline the morphosyntactic analysis
of Genglish. Section 3 describes the corpus-based phoneti-
zation by using the CART method, and sections 4 and 5
describe NUU concatenative synthesis of Genglish.

2. MORPHOSYNTACTIC ANALYSIS

It is often impossible to correctly pronounce a sequence
of words in natural languages without prior knowledge of
their part-of-speech, as well as of their hierarchical organi-
zation into groups, which itself also depends on the sequence
of part-of-speech involved. Part-of-speech information can
simply be obtained from a lexicon in many cases, but there
are a large number of words (most of them frequently used),
which can have distinct part-of-speech, depending the con-
text in which they are used (think of ”record”, ”present”,
”answer”, or ”kind”, in English, and ”gengle” in Genglish).
Genglish contains no numbers, no abbreviations, no acronyms,
no complicated proper names, and no unknown words. What
is more, Genglish writers make no spelling mistakes. This
makes our first Genglish module a model of simplicity : the
only task it has to perform is to segment incoming sentences
into tokens (words and punctuations).

The morpho-syntactic module of TTSBOX is composed
of a morphological analysis module, a contextual analysis
module, and a syntactic-prosodic parser.

2.1. Morphological Analysis of Genglish

Since Genglish is, by definition, a closed language, the pos-
sible part-of-speech categories of its words can advanta-
geously be described in terms of a morphological lexicon,
which provides a list of all words, associated with their pos-
sible part-of-speech categories.

V - 5370-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

genglish_morph_lex ={

',', {'punctuation'}

'.', {'punctuation'}
'John', {'propername'}

'and', {'coordinator'}

'are',{'auxiliary'}

'be',{'auxiliary'}
'gengle',{'verb'; 'noun'}

'gengled',{'verb';

'participle'}

'gengles',{'verb'; 'noun'}
'gengling',{'participle'}

'genglish',{'adjective'}

'gengly', {'adverb'}
'is',{'auxiliary'}

'it', {'pronoun'}

'of', {'of'}

'on', {'preposition'}
'since', {'subordinator'}

'the', {'determiner'}

'to', {'to'}
'which', {'pronoun'}

};

Fig. 1. The (expanded) contents of the morphological lex-
icon of Genglish.

We therefore analyze our Genglish corpus to derive its
morphological lexicon (Fig. 1). Notice the number of ele-
ments in the second column of this lexicon results from the
tags we have stored in our corpus, which was our own de-
cision. The more categories we distinguish, the more infor-
mation we will have later for phonetization and syntactic-
prosodic grouping; on the other hand, the design of the
contextual analysis module will be harder.

2.2. Contextual Analysis of Genglish

We used n-grams for contextual analysis of Genglish. It is
straightforward to see the problem in terms of a finite state
automaton. In a bigram model, it is assumed that the prob-
ability of a tag only depends on the previous tag. It is then
easy to sketch a bigram, using a set of states which simply
represent the part-of-speech categories considered by the
grammar (one state per category). Each transition is asso-
ciated with a transition probability P (ci|cj) (from state j

to state i), which is the probability for a word of category
cj to be followed by a word of category ci. If one assumes
that the vocabulary is finite (as is the case for Genglish)
with L the number of elements in its vocabulary, one can
define, for each state and each word in the vocabulary, a
state-dependent emission probability P (wi|cj), which rep-
resents the probability that category cj appears as word
wi.

An example is given in Fig. 2, for a possible bigram
automaton of Genglish. Emission probabilities are given in
text boxes attached to states. In this particular case, a large
number of emission probabilities have zero value (and are
therefore not mentioned in the corresponding text boxes),
since all Genglish words cannot appear with all possible
part-of-speech categories. Transition probabilities are at-
tached to arcs. As opposed to emission probabilities, most
transition probabilities exist a priori.

The prior computation of all emission and transition

verb

noun

auxili

ary

pron

oun

to

parti

ciple

gengled 0.5

gengling 0.5

to 1

it 0.8

which 0.2

gengle 0.3

gengles 0.3
gengled 0.4

gengle 0.6

gengles 0.4

is 0.4

are 0.4

be 0.2

Fig. 2. A possible bigram automaton for Genglish (all
states are supposed to be fully connected: only a few con-
nections are shown; the white and black rings represent the
initial and final states).

probabilities is required. This can be done by counting ap-
pearances of words and tag combinations in a corpus. The
corpus must be large enough for the estimates obtained by
counting to be meaningful. Fortunately, since the vocab-
ulary of Genglish is very small, a few pages of text are
sufficient. Computing bigram emission probabilities is easy
in Genglish : the probability that category ci emits word
wi is approximately given by the number of times wi ap-
pears as ci , divided by the total number of words with
part-of-speech category ci :

P (wi|cj) ≈
#(wi, cj)

(cj)
. (1)

Similarly, the bigram transition probability between cat-
egories cj and ci is approximately given by the number of
times ci appears after cj , divided by the total number of
words with part-of-speech category cj :

P (ci|cj) ≈
#(ci, cj)

(cj)
. (2)

TTSBOX computes these estimates on our Genglish
corpus. In practice, though, one can never be sure to cover
all possible cases in a corpus, however large it is. People
typically address this problem by changing zeros into small,
non-zero values, which will tend to restrain the algorithm
from choosing very unlikely paths, while avoiding the as-
sumption of strict null probabilities. In our script we simply
add 1e-8 to all probabilities (see [2] for more information on
so-called smoothing techniques).

Once emission and transition probabilities are estimated,
obtaining the best sequence of tags for a given sentence re-
duces to selecting the best sequence of part-of-speech tags
for the sentence, i.e., the one with highest probability (given
the sequence of words and the bigram model). This corre-
sponds to finding the best path in a lattice. As a matter of

V - 538

➡ ➡

det adv adj

verb noun

noun verb

the gengly genglish gengle gengles

Fig. 3. An example of a lattice bigram for a simple
Genglish sentence. Transition probabilities are associated
with arcs. Each state is capable of emitting the word it
refers to with a state-dependent emission probability.

fact, while Fig. 2 shows a bigram automaton for all possible
sentences of Genglish, the automaton reduces to a lattice
for a given sentence (see Fig. 3).

2.3. Syntactic-Prosodic Grouping of Genglish

In many state-of-the-art TTS systems, prosodic phrases are
identified with a rather trivial chinks ’n chunks algorithm
(after [3]). In this approach, we consider, a prosodic phrase
break is automatically set when a word belonging to the
chunks group is followed by a word classified as a chink
(or, in other words, a prosodic phrase is forced to be com-
posed of the largest possible sequence of chinks, followed
by the larget possible sequence of chunks). Chinks and
chunks basically correspond to function and content words
classes, with some minor modifications. For the synthesis
of Genglish, we consider the classes defined by Tab. 1.

Genglish
chinks

”and, ”since”, ”the”, ”on”, ”of”, ”to”,
”it”, ”which”, ”gengled” (participle),
”gengling”, ”is”, ”are”, ”do”, ”does”

Genglish
chunks

”gengle”, ”gengles”, ”gengled” (verb),
”genglish”, ”gengly”, ”John”, ”,”, ”.”

Table 1. Chinks’n chunks classes for syntactic-prosodic
grouping of Genglish.

3. GENGLISH PHONETIZATION

Dealing with Genglish thus a priori offers a comfortable
dictionary-based solution for phonetization. For tutorial
reasons, however, we rather develop here a small corpus-
based phonetizer, implemented as a decision tree trained
on real data. Besides, this generic technique is increasingly
used in multilingual TTS systems.

In the framework of automatic phonetization, the fea-
tures used in the decision tree are simply the letter being
currently phonetized, the letters on the left and right of the
current letter, and the part-of-speech of speech of the cur-
rent word (so as to handle heterphonic homographs). Out-
puts are phonemic symbols. Phonetic transcriptions are
given for each word in the Genglish training corpus (the
one we have used for n-grams), in such a way that each
letter in the word gets its phonetic symbol (including the

null symbol ’ ’ if needed). For practical reasons, the pho-
netic symbols used in the corpus are chosen so that each
phoneme gets a single phonetic character.

We thus create a MATLAB implementation of a CART
tree (both its training and running algorithms). It is recur-
sive, accounting for the fact that building a tree from its top
is similar to buiding a tree from any of its internal nodes.
We tested this phonetization on our complete Genglish test
corpus (taking the part-of-speech information for each word
from the corpus, not from n-gram tagging), and found no
error.

4. GENGLISH PROSODY

A recent trend in corpus-based prosody generation is not to
compute F0 or duration values at all. In this case, prosody
is obtained as a by-product of unit selection from a large
speech corpus. Thera are used phonetic features (such as
current and neighbouring phonemes), as well as linguistic
features (such as stress, position of the phoneme within
its word, position of the word within its prosodic phrase,
position of the prosodic phrase within the sentence, part-
of-speech tag of the current word, etc.) to find a sequence
of speech segments (or units) taken from the speech cor-
pus, whose features most closely match the features of the
speech unit to be synthesized. This is the approach we have
followed in the TTSBOX. More on this in section 5.

5. CONCATENATIVE SYNTHESIS

TTSBOX also contains a simple small but efficient unit
selection-based Genglish synthesizer. In order to make things
simple, we have recorded the same 50 sentences as those
stored in our Genglish (text) corpus and stored them in
files named 1.wav, 2.wav, . . . , and 50.wav.

Segmenting speech into phonemes is not an easy task,
even when phonemes are known (in which case this opera-
tion is termed as alignment). Done by hand, it takes forever;
done by machines, it is never completely reliable. We have
used an HMM-based text-to-speech alignment system de-
veloped at TCTS Lab [4] and produced corresponding .seg
files, the content of which is easy to understand: each line
mentions a start, an end (in sample), and a phoneme name.
Alignment, however, is conditioned by the degree of cor-
respondence between the assumed phonemic transcription
(sometimes called the orthepic transcription) and the actual
list of phonetic units produced. The gap between these two
worlds is undoubtedly the most difficult to bridge. Differ-
ences are mostly caused by coarticulation, which cannot be
taken into account in phonemic transcriptions. Phonemic-
phonetic mismatches also result from personal or local speak-
ing styles, as mostly obvious in the way speakers set pauses
in their speech (for obtaining meaningful .seg files, we have
inserted pauses in the phonetic transcription of sentences
after listening to the recordings). To a larger extent, per-
forming text-to-speech alignment raises the issue of the pho-
netic set to use. In our segmentation, for instance, we
have decided to transcribe ’gengled’ into /JENgld/ and not
/JENg@ld/, so as to avoid having to handle very short
[@] ”phonetic” units. In order to check the resulting seg-
mentation and correct if when necessary, we have used the

V - 539

➡ ➡

WAVESURFER tool developed at the Centre for Speech
Technology (CTT) at KTH in Stockholm (which reads the
same .seg files).

From this segmented speech corpus, we have built a
speech unit database, in which we have stored, for each
available unit, the minimum information needed to compute
its match to a given phonemic target. They are :

• Its phoneme,

• previous phoneme and next phoneme,

• the index of the the part-of-speech (pos) of the cur-
rent word,

• the index of the current prosodic phrase (within the
current sentence),

• the number of prosodic phrases on the right (until the
end of the sentence),

• the index of the current word (within the current
prosodic phrase),

• the number of words on the right (until the end of
the current prosodic phrase),

• the index of the sentence containing the phoneme (re-
lated wav file names are given by this index),

• and the start and the end sample for the current
phoneme in the related wav file.

The first member of the unit data (a string in our case),
termed as the linguistic context features of the unit, does
not explicitly refer to prosody : neither stress nor target
tones, nor even target intonation or duration values are used
here. This choice was deliberately made for keeping our unit
selection as simple as possible. It even makes sense for the
synthesis of natural languages, as shown by the recently
developed LiONS TTS system [5].

NUU synthesis block of the TTSBOX then queries this
database. First, it naturally formats targets in the same
form as units (assigning them the same linguistic context
feature set), except the acoustic information (in our case,
the name of the wav file and the start/end sample) is miss-
ing : this is precisely what we are looking for. Secondly it
checks for available diphones in the speech unit database
matching the target diphones, it prunes the list down to a
maximum of 10 units per diphone (so as to accelerate the
search). Finally it implements a Viterbi algorithm for find-
ing the best sequence of units, the one that minimizes an
overall selection cost. The target cost is defined in a very
crude way : it is 1 if the linguistic context features of unit
and target match, and 0 otherwise. In other words, we have
given the same weight to all linguistic features. The con-
catenation cost is simply set to 0 for consecutive units, and
to 1 for others. No acoustic distance is computed.

Last but not least, we use a simple concatenation, which
extracts selected diphones from the speech corpus and as-
sembles them into synthetic speech. It is well known that
this operation tends to produce audible mismatches (namely,
spectral amplitude mismatches, pitch mismatches, and phase
mismatches; see [6], Chap. 10). A minimalist treatment
of phase mismatches is implemented here, by computing
the cross-correlation between units to assemble, and slightly
shifting the second one accordingly (so as to maximize cross-
correlation around the concatenation point). Taking care of

the other types of mismatches would require the more ad-
vanced frequency-domain synthesis systems.

6. FUTURE WORK

While most of the concepts used in the TTSBOX have
only been used in a crude way, many refinements could be
adopted to face these new issues. Let us mention, for in-
stance: how to handle numbers, acronyms, abbreviations,
uppercase titles; how to handle out-of vocabulary words,
spelling mistakes; more elaborate models of prosodic phras-
ing should by used; the issue of corpus design should by
considered; how to assess synthetic speech quality (both in
terms of naturalness and intelligibility) [7].

The simplicity of TTSBOX precisely makes it possible
for students not only to analyze TTS in a step-by-step way,
but also and more interestingly to refine it themselves, start-
ing from a working tool. TTSBOX is available for free at
http://tcts.fpms.ac.be/projects/ttsbox/.

7. ACKNOWLEDGEMENTS

T. Dutoit would like to thank Mathieu Jospin and Grégory
Lenoir, who initiated the Matlab programming of simple
CART trees, and Julien Hamaide and Stéphanie Devuyst,
who worked on the n-gram tagger. He is also indebted
to Laurent Couvreur, who segmented the Genglish speech
corpus using the HMM/ANN tools at TCTS Lab.

The work of M. Cernak was supported by the Slovak
Agency for Science VEGA, grants No. 2/2087/22 and No.
1/0146/03.

8. REFERENCES

[1] A.W. BLACK and P. TAYLOR, “Festival speech syn-
thesis system : system documentation,” Tech. Rep.
HCRC/TR-83, Human Communication Research Cen-
tre, 1997.

[2] S.F. CHEN and J.T. GOODMAN, “An Empirical
Study of Smoothing Techniques for Language Model-
ing,” Tech. Rep. TR-10-98, Computer Science Group,
Harvard University, 1998.

[3] M.J. LIBERMAN and K.W. CHURCH, “Text Analysis
and Word Pronunciation in Text-to-Speech Synthesis,”
in Advances in Speech Signal Processing, S. Furui and
M.M. Sondhi, Eds., pp. 791–831. Dekker, New York,
1992.

[4] F. MALFRERE, O. DEROO, T. DUTOIT, and C. RIS,
“Phonetic Alignement : Speech-Synthesis-based versus
Viterbi-based,” Speech Communication, vol. 40, no. 4,
pp. 503–517, 2003.

[5] R. BEAUFORT and V. COLOTTE, “Synthèse Vocale
par Sélection Linguistiquement Orientée d’unités Non-
uniformes : LiONS,” in Proceedings of JEP 2004, 2004.

[6] T. DUTOIT, An Introduction to Text-to-Speech Synthe-

sis, Kluwer Academic Publishers, Dordrecht, 1997.

[7] O. BOEFFARD and C. D’ALESSANDRO, “Synthèse
de la Parole,” in Analyse, Synthèse et Codage de la

Parole, J. Mariani, Ed. Hermes, Lavoisier, Paris, 2002.

V - 540

➡ ➠

