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ABSTRACT

We describe a robust deconvolution algorithm for simultaneously
estimating an acoustic source signal and convolutive filters asso-
ciated with the acoustic room impulse responses from a pair of
microphone signals. In contrast to conventional blind deconvo-
lution techniques which rely upon a knowledge of the statistics
of the source signal, our algorithm exploits the nonnegativity and
sparsity structure of room impulse responses. The algorithm is for-
mulated as a quadratic optimization problem with respect to both
the source signal and filter coefficients, and proceeds by iteratively
solving the optimization in two alternating steps. In the H-step,
the nonnegative filter coefficients are optimally estimated within a
Bayesian framework using a relevant set of regularization parame-
ters. In the S-step, the source signal is estimated without any prior
assumption on its statistical distribution. The resulting estimates
converge to a relevant solution exhibiting appropriate sparseness
in the filters. Simulation results indicate that the algorithm is able
to precisely recover both the source signal and filter coefficients,
even in the presence of large ambient noise.

1. INTRODUCTION

The original motivation for this work was to accurately estimate
the time difference of arrival between reverberant acoustic sig-
nals. This scenario is depicted in Fig.1 where the signals are
measured by a pair of microphones. A single acoustic source
signal s(t) impinges on the two microphones, and the observed
signals xm(t), m = 1, 2 are given by the convolution of the
source s(t) with the corresponding acoustic room impulse re-
sponses hm(t), m = 1, 2:

xm(t) =

∫
dt′hm(t′)s(t − t′) + nm(t), m = 1, 2 (1)

where nm(t) is random additive noise in the microphones. Theo-
retical models of the acoustic reflections indicate that the acoustic
room impulse responses hm(t) should be nonnegative and display
a sparse structure [1]. In recent work [2, 3], we used nonnegative
deconvolution to estimate the filter coefficients when the source
signal was known. In this submission, we describe a new algo-
rithm based upon Bayesian regularization and nonnegativity con-
straints to estimate both an unknown source signal as well as the
appropriate sparse filter coefficients.

The problem of simultaneously estimating unknown source
signals and unknown filters from their convolved measurements
has been extensively studied in the last decade. Most current
techniques for blind deconvolution exploit some knowledge of the
statistics of the source signal [4, 5, 6, 7]. These algorithms typi-
cally rely upon quantities such as higher order correlations in the
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Fig. 1. An acoustic source signal s(t) is measured by two micro-
phones in a reverberant environment. The observed signals x1(t)
and x2(t) consist of time delayed direct path signals, as well as
echoes and ambient noise.

estimated source signal to guide the blind deconvolution process.
But in order to accurately calculate these statistics, large amounts
of data need to be collected. In rapidly changing acoustic envi-
ronments such as with a moving source, these algorithms may not
be appropriate. Moreover, most of these blind deconvolution algo-
rithms are also not very robust to the presence of noise.

In the following work, we propose a relevant deconvolution
framework for accurately resolving a single acoustic source sig-
nal s(t) as well as the room impulse responses hm(t) from two
convoluted measurements xm(t). Our algorithm does not assume
anything about the nature of the source signal s(t), and instead
relies upon the sparse, nonnegative structure of the filters hm(t).
Mathematically, our algorithm optimizes the following likelihood
cost function with respect to both the source s(t) and nonnegative
filter hm(t):

min
hm(t)≥0,s(t)

2∑
m=1

∫
dt |xm(t) − hm(t) ∗ s(t)|2 + λ̂m(t)hm(t),

(2)
where ∗ denotes convolution, and λ̂m(t) are L1-norm regulariza-
tion parameters. The deconvolution algorithm proceeds by alter-
natively optimizing the estimated filter parameters (H-step) and
the estimated source signal (S-step). The H-step consists of solv-
ing the non-negative least squares optimization for the filter co-
efficients while estimating the relevant regularization parameters
within a Bayesian framework. In the S-step, the current filter esti-
mates are used to recalculate the estimated source signal. Because
the algorithm does not rely upon calculating source statistics and
explicitly takes noise into account in the Bayesian regularization,
it is quite computationally efficient and robust.

The remainder of the paper is arranged as follows. In Sec-
tion 2, we describe the Bayesian regularization and nonnegative
deconvolution procedure which forms the H-step in the relevant
deconvolution algorithm. Then in Section 3, we introduce the up-
date rule for iteratively estimating the source signal. The perfor-
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mance of our relevant deconvolution algorithm is shown in Sec-
tion 4, and finally discussed in Section 5.

2. H-STEP: BAYESIAN REGULARIZATION AND
NONNEGATIVE DECONVOLUTION (BRAND)

The H-Step of the deconvolution algorithm estimates the most rel-
evant filter coefficients given the current source estimate. Within
the context of a probabilistic Bayesian framework [8], the filter es-
timation is performed as a quadratic optimization with nonnegative
constraints. The signals in Eq. 2 are first sampled in the discrete
time domain, resulting in the matrix form:

min
α(m)≥0,s

2∑
m=1

1

2
‖xm − S(m)α(m)‖2 + (λ̂(m))T α(m) (3)

where xm = [xm(t1) xm(t2) . . . xm(tN )]T is a N × 1 vec-
tor containing the measured signal in the m-th microphone, and
S(m) = [s(t − ∆t

(m)
1 ) s(t − ∆t

(m)
2 ) . . . s(t − ∆t

(m)
Mm

)] is a
N × Mm matrix consisting of delayed patterns of the estimated
source signal s(t) = [s(t1) s(t2) . . . s(tN )]T as column vectors.
The set of time delays is given by {∆ti}Mm

i=1 , and α(m) are the
discrete samples of impulse responses hm(t) at those time delays.
λ̂(m) is a Mm ×1 vector, where the ith component corresponds to
the Bayesian regularization parameter for α

(m)
i .

Given the current estimate of the source s, the best estimate of
the filter coefficients is calculated by optimizing:

min
α(m)≥0

1

2
‖xm − S(m)α(m)‖2 + (λ̂(m))T α(m) m = 1, 2. (4)

In order to properly define the regularization parameters, we show
how this optimization arises from a probabilistic generative model.
In the following, we omit the channel number m = 1, 2 from our
notation since both channels are treated equivalently.

The probabilistic model assumes the measured signal x(t) is
contaminated by additive Gaussian white noise with zero-mean
and covariance σ2:

P (x|S, α, σ2) =
1

(2πσ2)N/2
exp

(
− 1

2σ2
‖x − Sα‖2

)
. (5)

Sparseness in the filter coefficients is achieved using indepen-
dent exponential prior distributions. The priors only allow nonneg-
ative values and their sharpness is controlled by the regularization
parameters λ = [λ1 λ2 . . . λM ]T :

P (α|λ) =

M∏
i=1

λi exp{−λiαi}, α ≥ 0 . (6)

Rather than manually setting the regularization parameters σ2 and
λ, they are inferred from the data by maximizing the posterior dis-
tribution:

P (λ, σ2|x,S) =
P (x|λ, σ2,S)P (λ, σ2)

P (x|S)
. (7)

Assuming a flat prior for P (λ, σ2) [9], estimating σ2 and λ is then
equivalent to maximizing the likelihood:

P (x|λ, σ2,S) =

∫
α≥0

dαP (x|S, α, σ2)P (α|λ) (8)

=

∏
i λi

(2πσ2)N/2

∫
α≥0

dα exp[−F (α)]

where

F (α) =
1

2σ2
(x − Sα)T (x − Sα) + λT α. (9)

Since the integral in Eq. 8 cannot be directly maximized, we
derive the following iterative update rules for λ and σ2 using
Expectation-Maximization (EM):

1

λi
←−

∫
α≥0

dα αiQ(α) (10)

σ2 ←− 1

N

∫
α≥0

dα (x − Sα)T (x − Sα)Q(α) (11)

where the expectations are taken over the distribution

Q(α) =
exp[−F (α)]

Zα
, (12)

with normalization Zα =
∫

α≥0
dα exp[−F (α)]. Since the inte-

grals in Eq. 10 and Eq. 11 are still intractable, we make a factorized
approximation for Q(α).

The maximum likelihood estimate for αML is determined by
solving the nonnegative quadratic programming (NNQP) problem:

min
α≥0

1

2σ2
(x − Sα)T (x − Sα) + λT α. (13)

where the linear term is related to Eq. 4 by λ̂ = σ2λ. This opti-
mization can be solved using either a modified simplex method or
multiplicative updates as we have shown previously [3]. Using this
solution, we approximate the distribution Q(α) with the factorized
form:

Q(α) ≈ QI(αI)QJ(αJ) (14)

where the vector α is partitioned into two distinct subsets αI and
αJ , consisting of components i ∈ I such that (αML)i = 0, and
components j ∈ J such that (αML)j > 0, respectively.

Since the non-zero components αJ are not greatly restricted
by nonnegativity constraints, QJ(αJ) is approximated by the
unconstrained Gaussian with mean αML

J and inverse covariance
given by the submatrix AJJ of A = 1

σ2 ST S.
The other components αI are restricted by nonnegativity to

only vary in the positive direction, so their marginal distribution is
given by the following functional form:

QI(αI) ∝ exp[−(AαML + b)T
I αI − 1

2
αT

I AIIαI ], αI ≥ 0.

(15)
To calculate approximate expectations over this distribution, we
use an independent exponential distribution:

Q̂I(αI) =
∏
i∈I

1

µi
e−αi/µi , αi ≥ 0, µi ≥ 0 (16)

By minimizing the KL-divergence between Q̂I(αI) and QI(αI),
we obtain the mean-field parameters µi.

With the factorized approximation Q(α) = Q̂I(αI)QJ(αJ),
the expectations in Eqs. 10–11 can be analytically calculated. The
mean value of α under this distribution is given by:

ᾱi =

{
αML

i if i ∈ J
µi if i ∈ I

(17)
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and its covariance C is:

Cij =

{
(AJJ

−1)ij if i, j ∈ J
µ2

i δij otherwise

The update rules for λ and σ2 are then given by:

λi ←− 1

ᾱi
(18)

σ2 ←− 1

N
[(x − Sᾱ)T (x − Sᾱ) + Tr(ST SC)] (19)

To initialize the regularization parameters in λ, we start by
assuming that they are all uniform instead of being independent.
This improves the global convergence of the algorithm since there
are fewer optimization parameters. With a uniform prior on the
Bayesian regularization, namely:

P (α|λ′) = (λ′)M exp{−λ′ ∑
i

αi}, α ≥ 0 , (20)

the Bayesian update rules are similar to the independent case ex-
cept that Eq. 9, Eq. 10 and Eq. 18 become

F (α) =
1

2σ2
(x − Sα)T (x − Sα) + λ′eT α. (21)

1

λ′ ←− 1

M

∫
α≥0

dα eT αQ(α) (22)

λ′ ←− M∑
i ᾱi

(23)

respectively, where e = [1 1 1 . . . 1]T . Our algorithm proceeds
by initially beginning with a uniform Bayesian regularization for
the first few iterations, and then the independent regularization is
used to further refine the solution.

3. S-STEP: SOURCE UPDATE RULE

The alternating S-step of the deconvolution algorithm optimizes
the most probable source signal s with respect to the current esti-
mate of the filter parameters α(m) (m = 1, 2) from Eq. 3. The
optimal source is derived from the optimization:

min
s

2∑
m=1

1

2
‖xm − Ams‖2, (24)

where Am is a Toeplitz matrix containing the nonnegative filter
coefficients of the m-th room impulse response. This quadratic
optimization can be solved analytically, giving the estimate: s =
(AT A)−1AT x. However, since the dimensionality of s can be
very large, a direct pseudo-inverse computation can be very costly.
We employ an alternative algorithm for computing s by splitting
the variables s = s+ − s− where both s+ and s− are nonnegative,
and by solving the resulting nonnegative quadratic programming
problem using a multiplicative update rule. These updates do not
require the adjustment of any rate parameters, and can also easily
incorporate the addition of source priors in the optimization.

As a standard nonnegative quadratic programming problem,
Eq. 24 becomes:

min
ŝ≥0

1

2
ŝT Hŝ + bT ŝ (25)

where ŝ = [s+; s−], bT = [−∑2
m=1 xT

mAm

∑2
m=1 xT

mAm],
and

H =

2∑
m=1

[
AT

mAm −AT
mAm

−AT
mAm AT

mAm

]
. (26)

The multiplicative updates for solving ŝ are

ŝi ← ŝi

[
−bi +

√
b2
i + 4(H+ŝ)i(H−ŝ)i

2(H+ŝ)i

]
. (27)

where H = H+ − H− is the decomposition of the matrix into its
positive and negative components. Due to the Toeplitz structure of
Am, the matrix-vector multiplications of H+ŝ and H−ŝ can be
efficiently computed using fast Fourier transformations (FFTs).

There is a uniform time delay and scaling factor that is in-
variant to the deconvolution optimization. We fix these factors by
choosing the filter coefficient of the direct path propagation of one
of the channels to have zero time delay and a fixed unity amplitude.

In summary, the complete algorithm for relevant deconvolu-
tion is:

1. Initialize σ2
1 , σ2

2 , λ(1), λ(2), s, and the discrete time de-
lays {∆t

(1)
i } and {∆t

(2)
i }. Without loss of generality,

{∆t
(2)
i } ≥ 0 while {∆t

(1)
i } may be either positive or neg-

ative.

2. Solve the nonnegative quadratic program problem in Eq. 4
for the signal x2 to estimate α(2). The estimated signals are
scaled appropriately so that α(2)(∆t = 0) = 1. Then σ2

2

and λ(2) are re-estimated based upon the current estimates
of s and α(2).

3. Solve nonnegative quadratic program problem in Eq. 4 for
the signal x1 to estimate α(1). Then σ2

1 and λ(1) are re-
estimated based upon the current estimates of s and α(1).

4. Repeat Steps 2-3 with a uniform regularization prior, and
then with an independent regularization prior.

5. A new estimate for the source s is computed from Eq. 27
using the previous estimate as an initial value.

6. Go back to Step 2 until convergence.

4. SIMULATION RESULT

In this section, the performance of the relevant deconvolution al-
gorithm is illustrated using a speech recording as a source signal.
The speech was sampled at 16 kHz, and 2048 samples were used
as shown in Fig. 2. The source signal was convolved with two
filters h1(t) and h2(t) to generate two observation signals x1(t)
and x2(t), respectively. The resulting x1(t) and x2(t) were then
optionally corrupted with Gaussian white noise.

For the deconvolution algorithm, σ2
1 , σ2

2 , λ(1), λ(2) were ini-
tialized to be some small values, {∆t

(1)
i } and {∆t

(2)
i } to be

0, Ts, 2Ts, ..., +63Ts where Ts is the sample interval. The gener-
alized cross-correlation was used to initially estimate the primary
time delay between x1(t) and x2(t), and the traditional beam-
formed solution was used to initial the estimate of s(t).

The mean squared error (‖ŝ(t) − s(t)‖2/‖s(t)‖2) of the esti-
mated source ŝ(t) at each iteration is shown in Fig 2. To illustrate
the robustness of the algorithm, x1(t) and x2(t) were corrupted
with various levels of Gaussian white noise. The deconvolution
results indicates that the relevant deconvolution algorithm is able
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Fig. 2. Mean square error of the estimated source signal ŝ(t):
‖ŝ(t) − s(t)‖2/‖s(t)‖2. The measured observations x1(t) and
x2(t) were contaminated with either zero, -40dB, -20dB, -10dB
Gaussian white noise, respectively.

to precisely and robustly recover the source signal. The estimated
source signal displays less error than the added noise level, show-
ing that deconvolution algorithm is not amplifying the input noise.

The estimated filters corresponding to no noise, -40dB, -20dB,
and -10dB ambient noise are plotted in Fig. 3. For noise levels of
-20dB or less, the estimated filter coeffients match the true filters.
Even with -10dB noise, the general structure of the filter coeffi-
cients is still properly computed.

5. DISCUSSION

We have described the relevant deconvolution algorithm for simul-
taneously estimating a single acoustic source and the associated
room impulse responses from two convoluted observations. In
contrast to conventional blind deconvolution algorithms, our al-
gorithm assumes no knowledge of the statistics of the source. This
approach has several distinct advantages. Relatively few measure-
ment samples are needed since the algorithm does not rely upon
calculating source statistics. Also, the signals do not need to be
prewhitened, and the algorithm can estimate the sources with a
variety of bandwidths. The algorithm is also quite robust to the
ambient noise, as observed in Fig. 2. This shows that nonnegativ-
ity constraints and Bayesian regularization are powerful methods
to help solve the deconvolution problem. Furthermore, this general
framework can easily be extended to incorporate signals from pos-
sibly more sensors, and to estimate perhaps more than one source.

Although we have emphasized the role of nonnegativity and
sparsity of the filter coefficients in this work, the algorithm does
not preclude incorporating prior knowledge about the source. Pre-
liminary work indicates that the convergence and robustness of
the algorithm is even further improved by incorporating a sim-
ple Laplacian prior on the source signal. Further experimentation
will illustrate the utility of the relevant deconvolution algorithm
for real-time deconvolution problems.

We acknowledge discussions with Jihun Ham, Fei Sha, and
Lawrence Saul. We also acknowledge support from the U.S. Na-
tional Science Foundation and the Army Research Office.

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

0.5

1

0 20 40 60 80
0

0.5

1

α1 α2

∆t (Ts) ∆t (Ts)

A: No noise

B: -40dB

C: -20dB

D: -10dB
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