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ABSTRACT

In this paper we present a method to address the (inherently ill-
posed) problem of missing data interpolation over repeated short
gaps in audio signals. By formulating the problem in terms of a
Gabor regression model, we show that it is possible to leverage in-
formation from the surrounding time-frequency plane in order to
obtain an interpolation in keeping with the qualities of the signal
under consideration. As an exploratory investigation of this tech-
nique’s potential, we consider two example restoration scenarios
in which over one third of the data values in total are missing.

1. INTRODUCTION

We present here a method for missing data interpolation in audio
time series. Much related work has been done in the areas of audio
signal interpolation and extrapolation; for an overview we refer
the reader to [1, 2, 3, 4, 5] and references therein. However, it is
well known that schemes such as autoregressive modeling can suf-
fer from audible distortion in situations involving voiced speech or
music extracts [6, Chapter 5]. Additionally, these and other meth-
ods require the tuning of parameters such as model order and block
length, and can sometimes lead to reconstructions which are overly
smooth in comparison to typical audio signals [6, Chapter 5]. By
contrast, we outline a method based on the principles of a Gabor
regression model [7,8] as a potential way to avoid these shortcom-
ings.

2. SIGNAL MODEL

The model considered here stems from earlier work in which the
signal under consideration is decomposed according to the princi-
ples of Gabor analysis over finite cyclic groups [7, 8]. Simply put,
this method is a formalization of the tried-and-true overlap-add
method commonly used for audio signal analysis and synthesis
(see, e.g., [9] for a detailed exploration of this relationship).

To this end, we recall that the standard practice for modifica-
tion of an audio times series vector x ∈ R

L proceeds as follows:
first, x is divided into overlapping segments via the multiplicative
action of a (typically) smooth, symmetric window g whose effec-
tive size l (typically � L) is chosen as a function of the sampling
rate such that the analysis window length lies in the range of 15–
40 ms, depending on the time-varying nature of the audio signal
class under consideration. The discrete Fourier transform (DFT)

is applied on each interval and the resultant spectral coefficients
are modified according to the task at hand; the inverse DFT is then
taken and a corresponding synthesis window applied to each seg-
ment. Finally, the overlapping segments are added together in an
appropriately weighted manner in order to reconstitute the modi-
fied time series vector x̂.

2.1. Formalizing the Overlap-Add Method

As a prelude to the interpolation model presented below, it is help-
ful to understand the overlap-add procedure more formally as fol-
lows: using the pair (m, n) to denote modulation and transla-
tion indices respectively, and thus to index a (separable) lattice
of points in the time-frequency plane, we may think of mapping
each windowed segment of x to a corresponding short-time spec-
tral segment, or sampled “slice” of that signal’s time-frequency
representation. In particular, this operation corresponds to a rep-
resentation of x in terms of a set of Gabor transform coefficients
{cm,n} representing a sufficiently fine tiling of the time-frequency
plane.

These so-called analysis coefficients are calculated as inner
products of x and translated, modulated versions of some cho-
sen analysis window as cm,n = 〈x, gm,n〉, where gm,n denotes a
discretized, time-frequency shifted version of a window function
g(t):

gm,n(t) = g
“
t − n

N
L

”
e2πj m

M
t, t ∈ {0, 1, . . . , L − 1}.

Here M and N are positive, integer lattice constants chosen ac-
cording to parameters a and b (representing time and frequency
sampling intervals, respectively) such that Na = Mb = L, the
length of the vector x. The corresponding Gabor expansion in turn
provides a means of reconstructing x from its Gabor coefficients,
which act as weights in the sum of translations and modulations of
a dual (or synthesis) window function g̃(t):

x(t) =

M−1X
m=0

N−1X
n=0

cm,ng̃m,n(t) =
X
m,n

〈x, gm,n〉g̃m,n(t).

In the discrete-time case, we may hence denote the Gabor
transform of a vector x as c = G∗x, where G∗ denotes the Her-
mitian transpose of the L×MN Gabor analysis matrix G having
the time-frequency atom gm,n as its (m + nM)-th column, and
the Gabor transform coefficients {cm,n} are written in the form of
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a “stacked” column vector c of length MN . Likewise, we may de-
note the Gabor expansion of x by x = G̃c̃, where G̃ denotes the
L × MN Gabor synthesis matrix having g̃m,n as its (m + nM)-
th column, and the vector c̃ represents the corresponding synthesis
coefficients.

2.2. Overcompleteness and Gabor Frames

We distinguish between c and c̃ in the above discussion because an
overcomplete representation admits an entire subspace of perfect-
reconstruction synthesis coefficients. Indeed, if the column rank of
G is equal to L, then the family (g, a, b) will form a Gabor frame
with redundancy MN/L (see, e.g., [10]). Owing to the overlap
of the windowed time series segments in the scenario we consider
here, MN > L and this representation is in fact redundant, rather
than being a simple change of basis (such as, e.g., the discrete
cosine transform and its variants). In applications the redundancy
rate is typically equal to two, corresponding to use of the DFT
algorithm as described earlier and a “window overlap” in time of
50%.

In this case the analysis coefficients given by {〈x, gm,n〉} are
not the only choice of synthesis coefficients corresponding to a
perfect reconstruction of the chosen signal, but in fact simply com-
prise the minimum-norm set in an �2 sense. Hence, it is possible
to formulate statistical models in terms of a set of (unobserved)
synthesis coefficients c̃, rather than solely considering the analysis
coefficients obtained via the standard methods short-time Fourier
analysis.

3. INTERPOLATION OF MISSING DATA

3.1. A Gabor Regression Model

In light of the above exposition, consider first the standard additive
observation model

y = x + ε, ε ∼ N `
0, σ2I

´
, (1)

where y =
ˆ
y0 y1 . . . yL−1

˜T
is the vector of the observed

waveform, x is that of the underlying (audio) signal we wish to
estimate, and ε represents samples of an independent, identically
distributed, continuous Gaussian noise process with (potentially
unknown) variance σ2.

Most audio signal processing approaches begin with the Ga-
bor transform of the noisy data, given by G∗y according to the
chosen Gabor system. Here, however, we directly estimate the
synthesis coefficient representation x = G̃c̃. Indeed, by visualiz-
ing the overlap-add procedure on the operator level, we arrive at
the following additive observation model formulated in terms of
the Gabor synthesis coefficients c̃:

y = G̃c̃ + ε. (2)

It is important to recall once again that G̃ need only exist in a
conceptual sense, as only l � L elements of each of its columns
are non-zero. Hence it is never necessary in practice to construct
such a matrix; the structure of a Gabor frame implies that columns
of G̃ may be obtained as translations and modulations of a syn-
thesis window function g̃ (with effective length l) according to the
parameters of the chosen Gabor system.

3.2. Bayesian Estimation for the Gabor Regression Model

The noise variance term σ2 appearing in (1), taken in conjunction
with (2), immediately implies a Gaussian likelihood for y centered
on G̃c̃. If the synthesis coefficients c̃ are in turn considered as (la-
tent) random variables, we have by Bayes’ rule that their posterior
distribution satisfies

p (c̃ |y, θ) ∝ p (y | c̃, θ) p (c̃, θ) , (3)

where θ denotes a collection of any additional probabilistic terms
in the model. In particular, by considering a hierarchical prior of
the form p (c̃, θ) = p (c̃ | θ) p (θ), it is possible to formulate a
variety of regularization schemes with regard to estimation of the
synthesis coefficients. As detailed in [8], stochastic computation
may then be carried out via Markov chain Monte Carlo (MCMC)
methods in order to formulate point estimates of any model pa-
rameter. In particular, we shall be concerned here with the min-
imum mean-square error (MMSE) estimate E[ c̃ | y ], obtainable
via Monte Carlo integration given a collection of random samples
drawn from the joint posterior distribution according to (3).

As is well known, Bayesian models of this type constitute an
implicit form of regularization; indeed, the very act of synthesis
coefficient estimation in the overcomplete case [11] is an inher-
ently ill-posed (many-to-one) inverse problem. Here we consider
two approaches developed in [8, 11] for the specification of the
prior structure of the synthesis coefficient vector c̃. One case cor-
responds to an overcomplete estimation scheme; the other includes
a latent binary indicator variable at each point (m, n) along the
time-frequency lattice, resulting in the potential inclusion or ex-
clusion of each time-frequency coefficient in the signal model. In
both cases a (heavy-tailed) Student t prior distribution is assumed
for p (c̃); equivalently the coefficients are considered to be inde-
pendent, zero-mean, and normally distributed, conditional on (un-
known,) independent, inverse-gamma distributed variances a pri-
ori. The expected values of these variances (as a measure of coeffi-
cient power) may potentially be weighted in inverse proportion to
frequency, in keeping with typical audio signal content; also, var-
ious Markov random field models may be formulated in conjunc-
tion with the set of indicator variables along the time-frequency
lattice. The various forms of prior distribution considered will im-
ply a valid joint distribution p (y, c̃, θ); see [8] for details.

3.3. Experimental Results

We now consider the application of the Gabor regression model to
the interpolation of missing data values in audio time series. We
present two preliminary results representing an exploration of the
various model types described above, one (Fig. 1) using an over-
complete regression scheme as in [11], and the other (Fig. 2) using
a model-averaged variable selection scheme in which a Marko-
vian relationship over successive time blocks is assumed to gov-
ern Gabor coefficient activity at a given frequency (full details of
which are given in [8]). With regard to the data, we consider a
scenario typical of that encountered in audio restoration applica-
tions, in which short gaps resulting from severe impulsive noise
degradations occur frequently and at random intervals [6].

To this end, simulations were performed in which audio time
series were artificially degraded as follows: 16-bit signals sampled
at a rate of 44.1 kHz were first downsampled to 11.025 kHz and
then corrupted by a series of gaps of random length in the range 2–
4 ms, spaced randomly with a minimum separation of 5 ms. These

V - 518

➡ ➡



0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0

0.2

0.4

Time Domain Waveforms

Original Signal (Solo Piano)
Degraded Signal (36.5% Missing Data; SNR = 4.45 dB)
Reconstruction (SNR Gain = 10.2 dB)

0.82 0.83 0.84 0.85 0.86
0.1

0

0.1

1.22 1.23 1.24 1.25 1.26
0.05

0

0.05

Time (s)

A
m

pl
itu

de
 (

 ∈
 [

1,
1]

 )

Degraded Signal Gabor Transform

0

2000

4000

Original Signal Gabor Transform (Log Magnitude)

0

2000

4000

Reconstruction Signal Gabor Transform

F
re

qu
en

cy
 (

H
z)

Time (s)
0 0.5 1

0

2000

4000

N
or

m
al

iz
ed

 L
ev

el
 (

dB
)

120

100

80

60

40

20

0

Fig. 1. Interpolation of gaps in a solo piano signal, showing the log-magnitude of the Gabor transform coefficients (left column) and the
corresponding time series (right column). Time series comparisons are shown for both a note onset (middle) and a steady-state signal
portion (bottom).

signals were in turn processed using the Gabor regression model
described above, via a redundancy-two tight Gabor system derived
from a 256-sample Hanning window [8]. Estimation of c̃ was ac-
complished by simply removing the missing data values, along
with corresponding segments of the affected Gabor atoms g̃m,n,
from the likelihood calculation and coefficient sampling steps in
the employed Gibbs sampling MCMC procedure. Missing data
values were then imputed according to the signal reconstruction
x̂ = G̃ˆ̃c, where ˆ̃c = E[ c̃ |y ], the MMSE estimate of the synthe-
sis coefficient set.

The first example comprises a solo piano signal, degraded to
yield a signal-to-noise ratio (SNR) of 4.45 dB such that 36.5%
of its data values were missing. An overcomplete Gabor regres-
sion model was applied to the corrupted signal, with a frequency-
weighted prior distribution of coefficient variances used to penal-
ize energy at high frequencies (see [11] for details). The results of
this restoration are shown in Fig. 1. The estimated reconstruction
appears qualitatively reasonable; this observation is supported by
a corresponding increase in SNR of over 10 dB—although the ef-
fect of the prior weighting may be seen to result in some losses at
higher frequencies.

The second example, shown in Fig. 2, consists of a jazz trum-
pet recording degraded to yield an SNR of 4.23 dB such that 37.2%
of its data values were missing. This signal may be seen to have
a less regular time-frequency structure; in particular the starting
and stopping of notes necessitates a model capable of adapting to
the local degree of signal non-stationarity. To this end a variable
selection scheme was used as described above; the MMSE recon-
struction shown here was obtained by averaging over the posterior
distribution of models visited by the MCMC sampler. In this case
the gain in SNR is 5.94 dB. While not as great as before, the qual-
itative aspects of the restoration are once again promising, both

sonically and visually. Indeed, we encourage readers to audition
these and other results for themselves; to this end, data and code
for the reproduction of the experiments described herein will be
posted at the first author’s home page:
http://www.eecs.harvard.edu/∼patrick

We emphasize that the results presented here are obtained un-
der an essentially “blind” and automatic estimation scheme, in the
sense that all model elements are assigned hyperparameters corre-
sponding to vague prior distributions. In the experiments described
here, the parameters chosen a priori were those of the Gabor sys-
tem, and (if used) the exponent for frequency-scaling of compo-
nent variances or the transition parameters of the Markov chains
along the time-frequency lattice (although we note that it is pos-
sible in principle to estimate even these elements from the data).
Moreover, while the noise term ε is implicitly considered to be a
measure of model fitting error here, such a procedure may also be
extended to cases where genuine global noise degradation exists.
An additional advantage of our approach is that the missing val-
ues are imputed via consideration of the joint distribution of the
audio waveform samples; both through the structure of the Gabor
synthesis matrix and the prior dependencies formulated amongst
the Gabor coefficients, information from surrounding areas of the
time-frequency plane contributes to the interpolation of missing
data values.

4. SUMMARY

Here we have presented two distinct examples of missing data in-
terpolation for audio time series via a Gabor regression model.
These examples were constructed in a manner which emulates
audio restoration applications, where clicks and other impulsive
degradations are so frequent and severe as to preclude the extrac-
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Fig. 2. Interpolation of gaps in a jazz trumpet signal, showing the log-magnitude of the Gabor transform coefficients (left column) and the
corresponding time series (right column). Time series comparisons are shown for both a steady-state signal portion (middle) and a note
onset (bottom)

tion of useful signal information from the corrupted areas. Of
course, other important and related applications exist, including
for instance the problem of packet loss in voice-over-Internet-protocol
(VoIP) transmission.

The suitability of a Gabor regression model overall is evi-
denced by the fact that promising restorations (from both the ob-
jective and subjective points of view) may be obtained even in
cases where over 35% of the data values are missing. Lastly, we
note that while here the locations of missing data are assumed to
be known a priori, the methodology may be extended to a fully
Bayesian scheme for joint detection, interpolation, and noise re-
duction for signal enhancement, as in the earlier Bayesian ap-
proaches of [6, Chapter 12].
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