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ABSTRACT

In this paper, motivated by large margin classifiers in machine
learning, we propose a novel method to estimate continuous den-
sity hidden Markov model (CDHMM ) in speech recognition ac-
cording to the principle of maximizing the minimum multi-class
separation margin. The approach is named as large margin HMM.
Firstly, we will show that this type of large margin HMM estima-
tion problem can be formulated as a standard constrained minimax
optimization problem. Secondly, we propose an iterative localized
optimization approach to perform the above minimax optimization
for one model at each time to guarantee that the optimal value
of the objective function always exists in the course of model pa-
rameter optimization. Then, we show that during each step the
optimization can be solved by the GPD (generalized probabilis-
tic descent) algorithm if we approximate the objective function by
a differentiable function, such as summation of exponential func-
tions. The large margin HMM-based classifiers are evaluated in
a speaker-independent E-set speech recognition task by using the
OGI ISOLET database. Experimental results show that the large
margin HMMs can achieve significant word error rate (WER) re-
duction over the conventional HMM training methods, such as
maximum likelihood estimation (MLE) and minimum classifica-
tion error (MCE) training.

1. INTRODUCTION

Recently, the large margin methods have attracted a lot of research
attentions in the field of machine learning. The fact that it is the
margin in classification rather than the raw training error that mat-
ters has become a key tool in recent year when dealing with classi-
fiers. The concept of large margin has been identified as a unifying
principle for analyzing many different approaches in pattern clas-
sification, including Boosting, Mathematical Programming, Neu-
ral Networks and Support Vector Machine[10]. On the other hand,
hidden Markov models (HMMs) have been successfully applied to
many pattern classification tasks, ranging from automatic speech
recognition to text document processing, and etc. In most cases,
HMMs are usually estimated from training data based on maxi-
mum likelihood estimation (MLE) [5] or discriminative training
(DT). The representative discriminative training approaches for
HMMs include maximum mutual information estimation (MMIE)
[9, 11] and minimum classification error (MCE) training [7, 6, 3].
However, most discriminative training approaches suffer the prob-
lem of poor generalization, as demonstrated in many speech recog-
nition tasks[11, 3]. It is a very interesting topic how to build large
margin HMM-based classifiers to improve generalization capabil-
ity of HMMs in many practical classification problems. In [1, 2],

the authors proposed the so-called Hidden Markov Support Vec-
tor machines (HMSVM) for label sequence learning problem. In
HMSVM, discrete HMMs (DHMMs) are estimated based on the
large margin principle. As shown in [1, 2], estimation of DHMMs
for large margin turns out to be a quadratic programming prob-
lem under some constraints. The problem can be solved by many
standard optimization software tools.

In this paper, motivated by some recent advances in machine
learning about large margin classifiers, we propose to estimate
HMMs discriminatively based on a new criterion, such as maxi-
mum separation margin, as in other large margin classifiers. Based
on the theoretical results in machine learning, a large margin clas-
sifier implies a good generalization power and generally yields
much lower generalization errors in new test data as shown in sup-
port vector machine and boosting method. As we know, Gaussian
mixture continuous density HMM (CDHMM) is the most popu-
lar model for speech signals in speech recognition. In this pa-
per, we will study how to estimate CDHMMs based on the above
large margin principle for speech recognition. We propose a GPD-
based localized optimization method to estimate the large margin
HMMs iteratively. The large margin HMM-based classifiers are
evaluated in a speaker-independent E-set speech recognition task
by using the OGI ISOLET database. Experimental results show
that the large margin HMMs can achieve significant word error
rate (WER) reduction over the conventional HMM training meth-
ods, such as maximum likelihood estimation (MLE) and minimum
classification error (MCE) training.

The remainder of this paper is organized as follows. First,
in section 2 we will introduce the large margin training criterion.
Next, in section 3 we will give our solution, namely iterative local-
ized optimization for estimating large margin CDHMM parameters
using the GPD algorithm. Experimental results will be presented
in section 4. Finally a summary will be given in section 5.

2. LARGE MARGIN HMM

In ASR, given any speech utterance X, a speech recognizer will
choose the word Ŵ 1 as output based on the MAP decision rule as
follows:

Ŵ = arg max
W

p(W |X) = arg max
W

p(W ) · p(X|W ) (1)

= arg max
W

p(W ) · p(X|λW ) = arg max
W

F(X|λW )

where λW denotes the HMM representing the word W and
F(X|λW ) = p(W ) ·p(X|λW ) is called discriminant function. In

1Depending on the problem of interest, a word W may be any linguistic
unit, e.g., a phoneme, a syllable, a word, a phrase, a sentence, etc..
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this work, we are only interested in HMM λW and assume p(W )
is fixed.

For a speech utterance Xi, assuming its true word identity as
W T

i , following [1, 2], the multi-class separation margin for XT
i is

similarly defined as:

d(Xi) = F(Xi|λW T
i

) − max
Wj∈Ω Wj �=W T

i

F(Xi|λWj
) (2)

= min
Wj∈Ω Wj �=W T

i

h
F(Xi|λW T

i
) − F(Xi|λWj

)
i

(3)

where Ω denotes the set of all possible words.
Obviously, if d(Xi) ≤ 0, Xi will be incorrectly recognized

by the current HMM set, denoted as Λ; if d(Xi) > 0, Xi will be
correctly recognized by the models Λ.

Given a set of training dataD = {X1, X2, · · · , XN}, we usu-
ally know the true word identities for all utterances in D, denoted
as L = {W T

1 , W T
2 , · · · , W T

N}. Thus, we can calculate the sep-
aration margin (or margin for short hereafter) for every utterance
in D based on the definition in eq.(2) or (3). If we want to esti-
mate the HMM parameters Λ, one desirable estimation criterion
is to minimize the total number of utterances in whole training set
which have negative margin as in the standard MCE estimation [6].
Furthermore, motivated by the large margin principle in machine
learning, even for those utterances which all have positive mar-
gin, we may still want to maximize the minimum margin among
them towards an HMM-based large margin classifier. Based on
the machine learning theory, a large margin classifier usually leads
to much lower generalization error rate in a new testing set and
shows a more robust and better generalization capability. In this
work, we will study how to estimate HMMs for speech recognition
based on the above-mentioned principle of maximizing minimum
multi-class separation margin.

First of all, from all utterances in D, we need to identify a
subset of utterances, S , as:

S = {Xi | Xi ∈ D and 0 ≤ d(Xi) ≤ γ} (4)

where γ > 0 is a pre-set positive number. Analogically, we call
S as support vector set and each utterance in S is called a sup-
port token which has relatively small positive margin among all
utterances in training set D. In other words, all utterances in S
are relatively close to the classification boundary even though all
of them locate in the right decision regions. To achieve a better
generalization power, it is desirable to adjust decision boundaries,
which are implicitly determined by all models, through optimiz-
ing HMM parameters Λ to make all support tokens as far from
the decision boundaries as possible, which will result in a robust
classifier with better generalization capability. This idea leads to
estimating the HMM models Λ based on the criterion of maximiz-
ing the minimum margin of all support tokens, which is named as
large margin estimation (LME) of HMM.

Λ̃ = arg max
Λ

min
Xi∈S

d(Xi) (5)

where the above maximization and minimization are performed
subject to the constraints that d(Xi) > 0 for all Xi ∈ S . The
HMM models, Λ̃, estimated in this way, are called large margin
HMMs.

Considering eq.(3), large margin HMMs can be equivalently
estimated as follows:

Λ̃ = arg max
Λ

min
Xi∈S Wj∈Ω j �=i

h
F(Xi|λW T

i
) − F(Xi|λWj

)
i
(6)

subject to
F(Xi|λW T

i
) − F(Xi|λWj

) > 0 (7)

for all Xi ∈ S and Wj ∈ Ω j �= i.
Finally, the above optimization can be converted into a stan-

dard minimax optimization problem as:

Λ̃ = arg min
Λ

max
Xi∈S Wj∈Ω j �=i

h
F(Xi|λWj

) − F(Xi|λW T
i

)
i
(8)

where the minimax optimization is subject to the following con-
straint:

F(Xi|λWj
) − F(Xi|λW T

i
) < 0 (9)

for all Xi ∈ S and Wj ∈ Ω Wj �= W T
i .

3. ITERATIVE LOCALIZED OPTIMIZATION OF
LARGE MARGIN CDHMM

The constraints in eq.(9) can not guarantee the existence of the
minimax point. As an illustration of this, let’s assume a simple
case with only two classes m1 and m2 and there is a support to-
ken X close to the decision boundary. If we pull m1 and m2
together at the same time, we can keep the boundary unchanged
but increase the margin defined in eq.(3) as much as we want. As
models move toward X, the absolute values of both F(X|m1)
and F(X|m2) increase, so does the margin as well, although the
relative position of X related to the boundary actually does not
change at all.

More constraints must be introduced in the above minimax
optimization procedure to make sure that the optimal point does
exist. In this work, we adopt a localized optimization strategy to
add more constraints in the above minimax optimization, which
is named as the Iterative Localized Optimization method. In this
method, instead of optimizing parameters of all models at the same
time, we will only adjust one selected model in each step, and then
the process iterates to update another model until the minimum
margin is maximized. There are different approaches to solve this
problem. Please refer to a companion paper [8], where we re-
formulate the large margin estimation to maximize the so-called
relative margin, which is bounded by definition. In that case, any
regular optimization approach can be used for updating all model
parameters jointly.

Algorithm 1 Iterative Localized Optimization
repeat

1. Identify the support set S based on the current model set
Λ(n).
2. Choose the support token, say Xk, from S which currently
gives the minimum margin; Choose the true model of Xk , say
λ

(n)
k for optimization in this iteration.

3. Minimizing the margin by ONLY updating the model λk:
λ

(n)
k ⇒ λ

(n+1)
k .

4. n = n + 1.
until some convergence conditions are met

In the above iterative localized optimization method, in each
iteration, only one model, to say λk, is updated based on the mini-
max optimization given in eq.(8) so that we only need to consider
those functions which are relevant to the currently selected model.
The minimax optimization can be re-formulated as:
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λ
(n+1)
k = arg min

λk

max
Xi∈S i�=j j=k or i=k

h
F(Xi|λWj

) − F(Xi|λW T
i

)
i

(10)
subject to the constraints in eq.(9).

This localized minimax optimization can be numerically solved
by using some optimization software tools. Given a large number
of parameters in CDHMMs, it usually is too slow to use a general-
purpose minimax tool to solve this optimization problem.

In this work, we alternatively adopt a GPD-based algorithm
[7] to solve the minimax problem in eq.(10) in an approximate
way.

First of all, based on eq.(10), we construct a differentiable ob-
jective function as follows:

Q(λk) =
1

η
log

˘ X
Xi∈S j �=i i=k or j=k

exp[η · F(Xi|λWj
)

−η · F(Xi|λWi
)]

¯
(11)

where η > 1 is a constant . As η → ∞, Q(λk) will approach the
maximization in eq.(10). Then, the GPD algorithm can be used to
update the model parameters, λk, in order to minimize the above
approximate objective function, Q(λk).

Assume each speech unit, e.g., a word W , is modeled by an
N -state CDHMM with parameter vector λ = (π,A, θ), where π is
the initial state distribution, A = {aij |1 ≤ i, j ≤ N} is transition
matrix, and θ is parameter vector composed of mixture parameters
θi = {ωik, mik, rik}k=1,2,··· ,K for each state i, where K denotes
number of Gaussian mixtures in each state. The state observation
p.d.f. is assumed to be a mixture of multivariate Gaussian dis-
tribution. In many cases, we prefer to use multivariate Gaussian
distribution with diagonal precision matrix. Given any speech ut-
terance Xi = {xi1,xi2, · · · ,xiR}, F(Xi|λWj

) can be calculated
as:

F(Xi|λWj
) = log(p(Xi|λWj

)p(Wj))

≈ log p(Wj) + log πs∗1
+

RX
t=2

log as∗
t−1s∗t

+
RY

t=1

log ωs∗1 l∗1

+
1

2

RX
t=1

DX
d=1

ˆ
log rs∗t l∗t d − rs∗t l∗t d(xitd − ms∗t l∗t d)

2
˜

(12)

Here we only consider a simple case, where we only re-estimate
mean vectors of CDHMMs based on the large margin principle
while keeping all other CDHMM parameters constant during the
large margin estimation. For any utterance Xi in the support to-
ken set S , we can re-write F(Xi|λi) and F(Xi|λj) according to
eq.(12) as follows:

F(Xi|λi) ≈ C
′ −

1

2

TX
t=1

DX
d=1

rs′tl′td(xitd − ms′tl′td)
2 (13)

F(Xi|λj) ≈ C
” −

1

2

TX
t=1

DX
d=1

rs”
t l”t d(xitd − ms”

t l”t d)
2 (14)

where C′ and C” are two constants independent from mean
vectors. In this case, the discriminant functions F(Xi|λi) and
F(Xi|λj) can be represented as a summation of some quadratic

functions related to mean values of CDHMMs. Then we can rep-
resent the decision margin F(Xi|λi) − F(Xi|λj) as:

F(Xi|λi) − F(Xi|λj) ≈ C −
1

2

TX
t=1

DX
d=1

»
rs′

t
l′
t
d(xitd − ms′

t
l′
t
d)2

−rs”
t l”t d(xitd − ms”

t l”t d)
2

–
(15)

where C = C′ − C”.
From eqs.(11) and (15), it is straightforward to calculate the

gradient of the objective function, Q(λk) , with respect to each
mean vector in the model λk.

At last, we can use the GPD algorithm to adjust λk to mini-
mize the objective function Q(λk) as follows:

µ
(n+1)
sql = µ

(n)
sql − ε

∂Q(λk)

∂µsql

˛̨
˛̨
˛
λk=λ

(n)
k

(16)

(17)

where µ
(n+1)
sql denotes the l-th dimension of Gaussian mean vector

for the q-th mixture component of state s of HMM model λk at
(n + 1)-th iteration.

4. EXPERIMENTAL RESULTS

The LME algorithm described above is tested on the English E-set
vocabulary of OGI ISOLET database, consisting of {B, C, D, E,
G, P, T, V, Z}. ISOLET is a database of letters of the English al-
phabet spoken in isolation. The database consists of 7800 spoken
letters, two productions of each letter by 150 speakers, 75 male
and 75 female. The recordings were done under quiet, labora-
tory conditions with a noise-canceling microphone. The data were
sampled at 16 kHz with 16-bit quantization. ISOLET is divided
into five parts named ISOLET 1-5. In our experiment, only the
first production of each letter in ISOLET 1-4 is used as training
data (1080 utterances). All data in ISOLET 5 is used as testing
data (540 utterances). The feature vector is of 39 dimensions,
which include 12-d static MFCC, log-energy, delta and acceler-
ation coefficients. An HMM recognizer with 16-state whole-word
based models is trained based on different training criterion. Here
CDHMMs with1-mixture per state and 2-mixture per state are ex-
perimented. Only means will be updated in the experiment. We
always use the best MCE models as the initial models in the large
margin estimation.

Tables 1 gives a performance comparison of the best results
obtained by different training criteria.

Table 1. Results (word accuracy %) of different training criteria
on E-set test data.

1-mixture 2-mixture

ML 85.56 90.56

MCE 91.48 94.07

LME 92.78 95.19

It is clearly demonstrated that LME achieves the best results.
For example, the LME-trained models with 2-mixture per state
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achieve the word accuracy of 95.19%, which indicates 18.9% er-
rors reduction over the corresponding MCE-trained models, which
get 94.07% in accuracy.
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Fig. 1. Curves for LME training of a 2-mixture model on E-set
task. Top figure is word accuracy of LME model on testing set
The middle figure includes the curve of approximate margin which
was being maximized during LME-training and the curve of cor-
responding true margins.

Figure 1 plots the recognition accuracy, approximate margin,
−Q(λ) (where Q(λ) is given in eq.(11)), and true margin on the
testing set , d(Xi) as given in eq.(3) as a function of the number
of iterations of the LME training procedure. We can see from the
curves that with the number of iterations going up, the approximate
margin keeps increasing, which is consistent with the goal of GPD
optimization. Meanwhile the recognition accuracy on the testing
set keeps increasing (or unchanged for a short period) before it
reaches the best point. At 26 iterations, the LME model achieves
95.19% accuracy on the testing set, representing a 18.9% reduction
in recognition error. Also we can see that the true margin keeps in-
creasing accordingly as the the objective function increases. It can
be proved that the objective function, i.e., the approximate margin,
is an upper-bound of the true margin.

The current LME training algorithm only estimates models
based on the support vector set, which consists of only correctly
recognized tokens in the training set. In case there is any recogni-
tion error in the training set, a different algorithm, which is similar
to MCE formulation, was proposed in [4] to handle the set of error
tokens. However, in the work reported here, there is no recognition
error in the training set, so we are not concerned with this issue.

5. SUMMARY

In this paper, we have proposed a new training method, large mar-
gin HMM (LME), for continuous HMM based speech recognition.
The LME approach aims at improving the poor generalization ca-
pability of existing discriminative training algorithms. Motivated
by large margin classifier in machine learning, the new training
criterion is trying to maximize the minimum multi-class seperation
margin. We investigated its performance on a speaker-independent
isolated-word task. The LME method provides up to 18.9% reduc-
tion in error rate, compared to the popular MCE method. Further
research and experiments on continuous speech recognition and
sub-word based system are underway, which will be reported in
the future.
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