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ABSTRACT 

Acoustic events produced in meeting-room-like environments 

may carry information useful for perceptually aware interfaces. 

In this paper we focus on the problem of classifying 16 types of 

acoustic events, using and comparing several types of features 

and various classifiers based on either GMM or SVM. A vari-

able-feature-set clustering scheme is developed and compared 

with an already reported binary tree scheme. In our experiments 

with event-level features, the proposed clustering scheme with 

SVM achieves a 31.5% relative error reduction with respect to 

the best result from a binary tree scheme.

1. INTRODUCTION 

Activity detection and description is a key functionality of per-

ceptually aware interfaces working in collaborative human 

communication environments like meeting-rooms or classrooms. 

In such types of environments the human activity is reflected in a 

rich variety of acoustic events, either produced by the human 

body or by objects handled by humans, so acoustic scene analy-

sis [1] may help to detect and describe human activity as well as 

to increase the robustness of automatic speech recognition sys-

tems. Actually, automatic scene analysis includes several tasks 

that target at the acoustic sources: segregation, localization, iden-

tification... Previously reported works have considered the 

problem of segmenting audio streams using a small number of 

categories (e.g. [2][3]), or detecting a given acoustic event (e.g. 

[4]). Several other published papers aim at classifying acoustic 

events, each one focusing on a given environment or a type of 

sounds: e.g. telemedicine [5], sports [6], animals [7], etc. 

In this paper we focus on acoustic events that may take place 

in meeting-rooms or classrooms and on the preliminary task of 

classifying isolated sounds. The number of sounds encountered 

in such environments may be large, but in this initial work we 

have chosen 16 different acoustic events, including speech and 

music, and a database has been defined for training and testing. 

While in [8] the authors looked at the acoustic event classifica-

tion (AEC) problem from the point of view of speech 

recognition, applying the usual automatic speech recognition 

strategy (cepstral features, hidden Markov model (HMM) classi-

fiers), in our work we consider, develop and compare several 

feature sets and classification techniques, aiming at finding the 

ones which are most appropriate for the problem we are tackling. 

In this way, not only the parameters that model the short-time 

spectral envelope of the signals and its time derivatives are con-

sidered, but also other perceptual features, which may be more 

fitted to non-speech sounds. 

HMMs require relatively large amount of data to accurately 

train the models, something that is not realistic in our task. That 

is the reason why we have tried Support Vector Machine (SVM) 

[9], a classifier that discriminates the data by creating boundaries 

between classes rather than estimating class conditional densi-

ties, so it may need considerably less data to perform accurate 

classification. In fact, SVMs have already been used for audio 

classification [10]. In this work we use SVM classifiers and 

compare them with Gaussian Mixture Model (GMM) classifiers. 

As SVMs are binary classifiers, some type of strategy must 

be employed to extend them to the multi-class problem. In [10], 

the authors used the binary tree classification scheme to cope 

with several classes. In our work, we propose and develop a tree 

clustering technique using a specific feature set at each node. 

Relying on a given set of confusion matrices, that technique 

chooses the most discriminative feature set at each step of classi-

fication and, unlike the binary tree, it works for any number of 

classes. 

Comparative tests have been carried out using the two basic 

classifiers (GMM and SVM) and several classification schemes. 

The effect of a confusion-based modification of the generaliza-

tion parameters of the SVM classifier is also investigated in this 

work. The best results have been obtained using our proposed 

clustering scheme with SVM. Actually, it achieves a 31.5% rela-

tive average error reduction with respect to the best result from 

the binary tree scheme with SVM, and an even larger reduction 

with respect to the basic GMM-based classifier. 

2. DATABASE 

There is a lack of data for this classification problem, so acoustic 

event samples used in our work have been collected from several 

places, many of them from several websites. For four types of 

sounds we use 100 samples taken from the RWCP (Real World 

Computing Partnership) sound scene database [8]. Speech sam-

ples were taken from the ShATR Multiple Simultaneous Speaker 

Corpus [11] and short fragments from both close-talk and omni-

directional microphones are included. The database, which is 
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 Event Source Number

1 Chair moving I 12 

2 Clapping  RWCP + I 100+7 

3 Cough I 47 

4 Door slam I 80 

5 Keyboard I 45 

6 Laugh I 26 

7 Music I 38 

8 Paper crumple RWCP 100 

9 Paper tear RWCP 100 

10 Pen/pencil handwriting I 30 

11 Liquid pouring I 40 

12 Puncher/Stapler RWCP 200 

13 Sneeze I 40 

14 Sniffing I 13 

15 Speech ShATR 52 

16 Yawn I 12 

Table 1. The sixteen acoustical events considered in our 

database, including number of samples and their sources (I 

means Internet).

specified in Table 1, consists of 53 min of audio (942 files). The 

fact that sounds were taken from different sources makes the task 

more complicated due to the presence of several (at times even 

unknown) environments and recording conditions. An additional 

problem is the diversity in the number of samples per class. 

3. FEATURES 

All sounds were downsampled to 8 kHz, normalized to be in the 

range [-1 1], and framed (frame length=128, overlapping 50%, 

Hamming window). The silence portions were removed using an 

energy threshold. We used the following types of features: 

1. Perceptual-spectral features

 - Zero-crossing rate

 - Short time energy 

 - Subband energies: 4 subbands equally distributed along 20 

mel-scaled logarithmic filter-bank energies (FBE). 

 - Spectral flux: difference spectrum values between two adja-

cent frames and for the above-defined 4 subbands. 

 - Pitch. A simple cepstrum-based method was used to deter-

mine pitch in the range [70, 500] Hz. 

2. Cepstral-based spectral parameters

12 mel-frequency cepstral coefficients (MFCC) were ex-

tracted from 20 bands. The zero-th coefficient was removed, but 

the frame energy was added to the set. 

3. FF-based spectral parameters 

Parameters based on filtering the frequency sequence of log 

FBEs (FFBE) have recently been reported [12]. We have used 

the usual second-order filter H(z)=z-z
-1

, which implies a subtrac-

tion of the log FBEs of each two adjacent bands. 

First and second time derivatives were also calculated for the 

last two types of features. The three types of features were com-

bined to build 9 feature sets as shown in Table 2. The mean and 

standard deviation of the vectors estimated over the whole event 

signal were taken for classification, thus forming one vector per 

audio event with a number of elements which doubles the length 

of the feature set.  

4. EXPERIMENTS

After randomly permuting the event samples within each class 

and indexing them, odd index numbers were taken for training 

and even index numbers for testing. 20 permutations in each 

experiment were performed. Because of unevenness in the num-

ber of representatives of the various classes, the overall 

performance is computed as an average of the individual class 

performances.  

As SVMs with RBF kernels are used, there are two main pa-

rameters (hyperparameters) that are to be specified: the width σ
of the Gaussian function, and the regularization parameter C,

which controls the total distances from the misclassified points 

in the training phase to the bounding planes and it is considered 

as a tradeoff between minimizing the training error and maximiz-

ing the generalization capability of the classifier [9]. 5-fold 

cross-validation was applied to obtain the best setting of the 

kernel parameterσ . After the best kernel parameter is found, the 

whole training set is used again to generate the final classifier. 

4.1. Binary tree scheme 

First of all, the scheme proposed in [10], namely a binary 

tree with a SVM at each node, was applied to our acoustic event 

classification problem. In that reported work, each SVM was 

trained using a one against one strategy and C=200. In our work, 

we tried the same strategy, but with C=1, since this value yielded 

better results in our experiments, a fact that may indicate that our 

data are more noisy (contains more outliers) than data used in 

[10]. This SVM-based binary tree classification system was 

compared with a GMM classifier, which has one model per class 

and, for each test pattern, the model with maximal likelihood is 

chosen. Both a fixed and a variable number of Gaussians per 

class were tried, and the best accuracy was achieved by using a 

variable number that depends on the amount of data per class. 

Name Content Size 

1 Perc Perceptual-spectral 11 

2 Ceps+der E+MFCC+d+dd 39 

3 Ceps  E+MFCC 13 

4 FF+der  FFBE+d+dd 39 

5 FF FFBE 13 

6 Perc+ceps+der “Perc” + “Ceps+der” 48 

7 Perc+ceps “Perc” + “Ceps” 24 

8 Perc+FF+der “Perc” + “FF+der” 50 

9 Perc+FF “Perc” + “FF” 24 

Table 2. Feature sets that were used in this work, the way 

they were constructed from the basic features, and their 

size. d and dd denote first and second time derivatives, 

respectively. E means frame energy, and “+” means con-

catenation of features.
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Table 3 shows results for both classifiers. The best feature set 

in combination with the GMM classifier was the set number 9 

(Perc + FF), with classification rate 78,9%, whereas for the SVM 

classifier was the set number 8 (Perc + FF + der), with 82,9% 

classification rate. Note that, in our experiments, the SVM ap-

proach shows a higher performance than the GMM one across 

all types of feature sets.  

4.2. Variable-feature-set clustering scheme 

Due to the acoustic variety of events for classification, it is rea-

sonable to assume that different classes are better separated 

using specific feature sets (see Figure 1), the performance can 

improve by using a classification tree such that each of its nodes 

is associated to a different feature set. The tree is obtained by a 

clustering procedure based on the confusion matrices, one for 

each feature set, which result from the experiments reported in 

Section 4.1 by averaging over the 20 permutations. Those confu-

sion matrices are used to find the best way of splitting the classes 

at a given node into two clusters and assigning a feature set with 

the least mutual confusion. For the sake of homogeneity, we use 

confusion matrices obtained by SVM classifiers for SVM clus-

tering, and GMM matrices for GMM clustering. The confusion 

measures are normalized by the corresponding accuracies to 

cope with the dispersion of performance rates among the classes. 

As we have a relatively small number of classes, we can perform 

exhaustive search and get the global minimum. At the first step, 

all possible combinations of grouping 16 classes into two clus-

ters (i.e. grouping 6 and 10, 8 and 8, etc) are searched over the 

available 9 confusions matrices that correspond to the 9 consid-

ered feature sets. For example, for the SVM clustering, we found 

that the 16 classes were best separated choosing the clusters {9} 

and {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16}, and the 6th 

feature set. That process is carried out until we have single event 

clusters. Regarding the GMM classifier, the algorithm also 

groups the classes into two clusters, but in this case two models 

are generated at each step, one for each cluster. The algorithm is 

described with detail in [14]. 

In our experiments, we have tried several ways of alleviating 

the problem of having a too much different amount of training 

data between the two clusters at a given tree node. The first way 

is to restrict the exhaustive search to look for an equal number of 

classes at each cluster. Hereafter, we will refer to this variant as 

restricted clustering.  

Figure 2 shows the trees obtained by the normal (unre-

stricted) and restricted clustering algorithms in the SVM case. 

Note that the two trees show a very different structure but, de-

noting with N the number of classes (N=16), they have the same 

number of nodes (N-1), that is the same number of trained SVM 

classifiers. As observed in Figure 2, in normal clustering we 

mostly have only one class separated on each clustering step 

while the restricted tree shows a balanced structure. Regarding 

the GMM-based techniques, since each class model is trained 

without using information about the other classes it is not so 

much influenced by the problem of data unbalance. We also 

consider both clustering schemes for the GMM case. The result-

ing GMM schemes are similar to those in Figure 2 

The second proposed way of coping with data unbalance is to 

introduce different C values for positively- and negatively-

labeled training samples [13]. Additionally, since for each tree 

node an estimate of the number of confusions can be obtained as 

a byproduct of the clustering algorithm, we have used this esti-

mate values to adapt the regularization parameters. Thus, apart 

from the normal way of using the regularization parameter C in 

the SVM-based classifiers, three other different methods are 

considered in this work: 1) only one C parameter computed as K 

times the inverse of the number of confusions at the given tree 

node, 2) two different C values (C
+

and C
-

) whose values are K 

times the ratio between the number of negative (positive) train-

ing samples and the number of positive (negative) training 

samples, and 3) the effect of doing both adaptations simultane-

ously. The coefficient of proportionality K was set to 10 for all 

adaptations. 

Results are shown in Table 4. Note that the highest perform-

ances are obtained by using method 3, and again SVM performs 

better than GMM. 

5. DISCUSSION AND CONCLUSIONS 

Regarding the features, we have observed from the experimental 

results that the best separating feature sets for the most confused 

classes mostly are FFBE-based features (sets 4,5,8,9), while it 

appears that the least confused classes mostly are MFCC-based 

(sets 2,3,6,7). This fact may indicate that the FFBE-based fea-

tures are more discriminative than the MFCC features for highly 

overlapped data distributions, while MFCC features appear to 

show the best performance when there is a clearer separation 

between classes. However, for the most confused classes in the 

GMM case, the average best feature set is the one we have called 

perceptual set. This may be due to the relatively low size of that 

feature set, which facilitates the estimation problem.  

The proposed clustering schemes (both normal and restricted) 

show two computational advantages in front of the binary tree 

classifier. First, the required number of trained SVMs is N-1, 

where N is the number of classes, while for the binary tree (N-

1)N/2 trained SVMs are needed. Second, the proposed schemes 

involve a smaller number of classification steps, 4 for restricted 

clustering and between 1 and 14, depending on the input pattern, 

Table 3. Percentage of classification rate for the SVM-based 

binary tree and the GMM classifiers on the defined feature 

sets. 

1 2 3 4 5 6 7 8 9 

SVM 78.7 72.1 77.9 77.5 77.6 81.2 82.3 82.9 82.4

GMM 71.9 67.3 72 69.9 73.4 73 77.4 75.1 78.9

0
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1 2 3 4 5 6 7 8 9

feature set

A
C

C
   

  %

liquid
sneeze
sniff

Figure 1. Dependence of performance of classifying “liq-

uid_pouring”, “sneeze” and “sniff” sounds upon the feature 

sets, using SVMs.
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for normal clustering in our case (see Figure 1), whereas the 

binary tree requires 15. However, the proposed variable-feature-

set scheme has an obvious disadvantage: with our choice of fea-

ture sets (see Table 2) up to 9 feature sets can be involved in 

testing, 7 in our case (numbers 3 4 5 6 7 8 9). 

The column C=K in Table 4 shows that, without any adapta-

tion, SVM restricted clustering performs equally well as normal 

clustering. In that table, we can notice that SVM-N takes advan-

tage of using different C values for each cluster. And SVM-R 

does not take any advantage, due presumably to the balancing 

average implied by the half-to-half constraint. Additionally, as 

we can see from Table 4, introducing prior knowledge (about 

confusions) with the generalization parameter C (method 1) does 

not have a positive influence on the classification performance, 

while introducing it along with different C values for positive 

and negative classes (method 3) leads to an improvement for 

both types of clustering trees. The gain in performance, however, 

is not much significant, so there is a need to have a more sophis-

ticated algorithm of introducing prior knowledge about 

confusions in the regularization parameters. In restricted cluster-

ing we can obtain only the global minimum of error within the 

constraint so the final performance of the SVM-R technique is 

worse than that of the normal one (Table 4, method 3). We can 

also observe that normal clustering seems to perform slightly 

better than restricted clustering for GMM. 

In summary, the best results were obtained with SVM and 

the proposed clustering scheme, arriving to a 88.29 % classifica-

tion rate, which means a 31.5% relative average error reduction 

with respect to the best result from the binary tree scheme with 

SVM. That good performance is attributable to the clustering 

technique, and to the fact that SVM provides the user with the 

ability to introduce knowledge about class confusions.
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C=K METHOD 1 METHOD 2 METHOD 3

SVM-N 84.67 ± 2.5 84.05 ± 1.7 86.71 ± 1.4 88.29 ± 2.1

SVM-R 84.72 ± 2.6 84.88 ± 2.7 84.95 ± 2.2 87.20 ± 1.5

GMM-N 83.6 ± 2.2 

GMM-R 82.15 ± 2.3

Table 4. Performances of variable-feature-set clustering clas-

sifiers using different adaptations of the regularization 

parameters for the SVM case. -N and -R, denote normal and 

restricted clustering scheme, respectively. Standard devia-

tions  estimated over 20 repetitions are denoted with ±

Figure 2. Normal and restricted clustering schemes for SVM classifiers 
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