
BOOSTING WORD ERROR RATES

Christos Dimitrakakis and Samy Bengio

IDIAP
CP952

1920 Martigny
Switzerland

ABSTRACT

We apply boosting techniques to the problem of word error rate
minimisation in speech recognition. This is achieved through a
new definition of sample error for boosting and a training pro-
cedure for hidden Markov models. For this purpose we define a
sample error for sentence examples related to the word error rate.
Furthermore, for each sentence example we define a probability
distribution in time that represents our belief that an error has been
made at that particular frame. This is used to weigh the frames of
each sentence in the boosting framework. We present preliminary
results on the well-known Numbers 95 database that indicate the
importance of this temporal probability distribution.

1. INTRODUCTION

Boosting and other ensemble learning methods attempt to com-
bine multiple hypotheses from a number of experts into a single
hypothesis. This is feasible for classification and regression prob-
lems, where the hypothesis is a fixed-length vector. Other prob-
lems, such as sequence prediction and sequential decision making,
can also be cast in the classification and regression framework,
thus making the application of ensemble methods to these prob-
lems feasible. However, in some cases the hypothesis is a sequence
of symbols of unspecified length. One such application is speech
recognition, where the hypothesis can be a sequence of words or
phonemes.

In a previous paper [1] we have applied boosting to speech
recognition at the phoneme level. In that framework, the aim was
to reduce the phoneme classification error in pre-segmented exam-
ples. The resulting boosted phoneme models were combined into
a single speech recognition model using multi-stream techniques.

Previous approaches for the reduction of word error rate in-
clude [2], which employed a “corrective training scheme” and an
approach that also used boosting [3]. In the latter, the authors em-
ployed a boosting scheme where the sentences with the highest
error rate were classified as ’incorrect’ and the rest ’correct’, ir-
respective of the absolute word error rate of each sentences. The
weights of all frames constituting a sentence were adjusted equally
and boosting was applied at the frame level.

In this paper we introduce a new training method, specific to
boosting and hidden Markov models (HMMs) in order to reduce

This work was supported in part by the IST Program of the Euro-
pean Community, under the PASCAL Network of Excellence, IST-2002-
506778, funded in part by the Swiss Federal Office for Education and Sci-
ence (OFES) and the Swiss NSF through the NCCR on IM2.

the word error rate. We employ a score that is exponentially re-
lated to the word error rate of a sentence example. The weights
of the frames constituting a sentence are adjusted depending on
our expectation of how much they contribute to the error. Finally,
boosting is applied at the sentence and frame level simultaneously.
This method has arisen from a two-fold consideration: firstly, we
need to have an accurate measure of performance, which is the
word error rate. Secondly, we need a way to more exactly spec-
ify which parts of an example most probably have contributed to
errors in the final decision. Using boosting it is possible to focus
training on parts of the data which are most likely to give rise to er-
rors, while at the same time doing it in such a manner as to increase
an accurate measure of performance. We find that both aspects of
training have an important effect.

The paper is organised as follows: the following section gives
an introduction to boosting. Section 3 introduces the concept of
expected error, for the case when no labels are given for the exam-
ples. This is important for the task of word error rate minimisation.
Section 5 describes word error rate-related measures for boosting.
This is followed by a brief section on HMMs and multi-stream de-
coding, which is used to combine the boosted models. Experimen-
tal results are outlined in section 6 and the paper concludes with
a discussion in section 7 which discusses the results and possible
future research.

2. BOOSTING

Boosting algorithms [4, 5, 6] are a family of ensemble methods for
improving the performance of classifiers by training and combin-
ing a number of experts through an iterative process that focuses
the attention of each new expert to the training examples that were
hardest to classify by previous ones. The most successful boosting
algorithm for classification is AdaBoost [6], where an ensemble of
experts is able to decrease the training error exponentially fast as
long as each one has a classification error smaller than 50%.

More precisely, an AdaBoost ensemble is composed of a set
of ne experts, E = {e1, e2, ..., ene}. For each input x ∈ X , each
expert ei produces an output yi ∈ Y . These outputs are combined
according to the reliability βi ∈ [0, 1] of each expert:

y =

neX

i=1

βiyi.

The expert training is an iterative process, which begins with train-
ing a single expert and subsequently trains each new expert in turn,
until a termination condition is met. The experts are trained on

V - 5010-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

bootstrap replicates of the training dataset D = {di|i ∈ [1, N]},
with di = (xi, yi). The probability of adding example di to the
bootstrap replicate Dj is denoted as pj(di), with

P
i pj(di) = 1.

At the end of each boosting iteration j, βj is calculated according
to βj = 1

2
ln

1+εj

1−εj
where εj is the average loss of expert ej , given

by εj =
P

i pj(di)l(di), where l(di) is the sample loss of exam-
ple di. If, for any predicate π, we let [π] be 1 if π holds and 0
otherwise, it can be defined as: l(di) = [hi �= yi]. After training
in the current iteration is complete, the sampling probabilities are
updated so that pj(di) is increased for misclassified examples and
decreased for correctly classified examples according to:

pj+1(di) =
pj(i)e

βl(di)

Zj

, (1)

where Zj is a normalisation factor to make Dj+1 into a distribu-
tion. Thus, incorrectly classified examples are more likely to be
included in the next bootstrap data set. Because of this, the expert
created at each boosting iteration concentrates on harder parts of
the input space.

3. ERROR EXPECTATION FOR BOOSTING

In traditional supervised settings we are provided with a set of ex-
amples and labels, which constitute our training set, and thus it is
possible to apply margin maximisation algorithms such as Boost-
ing. However this becomes problematic when labels are noisy.
Such an example is a typical speech recognition data set. Most of
the time such a data set is composed of a set of sentences, with
a corresponding set of transcriptions. However, while the tran-
scriptions may be accurate as far as the intention of the speakers
or the hearing of the transcriber is concerned, subsequent transla-
tion of the transcription into phonetic labels is bound to be error
prone, as it is quite possible for either the speaker to mispronounce
words, or for the model that performs the automatic segmentation
to make mistakes. In such a situation, adapting a model so that it
minimises the errors made on the segmented transcriptions might
not automatically lead into a model that minimises the word error
rate, which is the real goal of a speech recognition system.

For this purpose, we would like to introduce the concept of
error expectation in the context of boosting. Thus, rather than
declaring with absolute certainty that an example is incorrect or
not, we simply define l(di) = P (yi �= hi), so that the sample loss
is now the probability that a mistake was made on example i and
we consider yi to be a random variable. We consider some cases
for the distribution of y in the following section that are relevant
to the problem of speech recognition.

3.1. Error Distributions in Sequential Decision Making

In sequential decision making problems the knowledge about the
correctness of decisions is delayed. Furthermore, it frequently
lacks detailed information concerning the temporal location of er-
rors. A common such case is knowing that we have made one or
more errors in the time interval [1, T]. This form occurs in individ-
ual sentence recognition, episodic reinforcement learning and var-
ious other settings. Let us denote the probability of having made
an error at time t ∈ [1, T], given as P (yt �= ht|y

T
1 �= hT

1). A
natural distribution for this case is to assume a flat prior and thus
have P (yt �= ht|y

T
1 �= hT

1) = 1/T . Another common case is the

exponential prior such that P (yt �= ht|y
T
1 �= hT

1) ∝ λt−T , with
λ ∈ [0, 1).

In this paper we focus on the application of speech recogni-
tion. For the case of labelled sentence examples it is possible to
have a procedure that can infer the location of an error in time.
This is because correctly recognised words offer an indication of
where possible errors lie. Assume some such procedure that cre-
ates an indicator function It such that It = 1 for instances in time
where an error could have been made. We can then estimate the
probability of having an error at time t as follows:

P (yt �= ht|y
T
1 �= hT

1) =
γIt

PT

k=1 γIk

, (2)

where the parameter γ ∈ [1,∞) expresses our confidence in the
accuracy of It. A value of 1 will cause the probability of an error
to be the same for all moments in time, irrespective of the value of
It, while when γ approaches infinity we have absolute confidence
in the inferred locations. Similar relations can be defined for the
exponential prior and they can be obtained through its convolution
with equation (2).

In order to apply boosting to temporal data, where classifica-
tion decisions are made at the end of each sequence, we use a set
of weights {ψt} corresponding to the set of frames in an exam-
ple sentence. At each boosting iteration j the weights are adjusted
through the use of (2), resulting in the following recursive relation:

ψt,j+1 =
ψt,jγ

It

PT

k=1 ψk,jγIk

(3)

4. SPEECH RECOGNITION WITH HIDDEN MARKOV
MODELS

This section quickly reviews how Hidden Markov Models (HMMs)
are used for the task of speech recognition. Let X = {x1, x2, . . . , xt}
be a sequence of acoustic frames representing a sentence S =
{s1, s2, . . . , sn}.

HMMs introduce a (hidden, unknown) state variable Q and
factor the joint distribution p(X, Q) using two simpler distribu-
tions, namely emission distributions p(xt|qt) and transition distri-
butions p(qt|qt−1). Such factorisation yields efficient training al-
gorithms such as the Expectation-Maximisation algorithm (EM) [7]
which can be used to maximise the likelihood of the acoustic data
X .

The success of HMMs applied to speech recognition is based
on a careful design of sub-models (distributions) mj correspond-
ing to lexical units (phonemes, or words). Given a training set of
acoustic sequences representing sentences, for which we know the
corresponding labelling in terms of phonemes (but not necessarily
the precise alignment), we create a new HMM for each sequence
as the concatenation of sub-model HMMs mj corresponding to the
sequence of phonemes. This new HMM can then be trained using
EM and will have the effect of adapting each sub-model HMM
accordingly.

When a new sequence of acoustic features corresponding to a
sentence becomes available, the objective is to obtain the optimal
sequence of sub-model HMMs Ŝ = {ŝ1, . . . , ŝn̂} (representing
phonemes) that could have generated the given observation se-
quence. An approximation of this can be done efficiently using
the well-known Viterbi algorithm [8] applied on an HMM which
allows for all possible sequences of words (or phonemes).

V - 502

➡ ➡

This training process maximizes the likelihood of the acoustic
sequence X given the correct corresponding sentence S, while it
may be more interesting to directly minimize the error between the
obtained sentence Ŝ and the desired sentence S given the acoustic
sequence X . This error is in general measured using the well-
known word error rate which computes the edit distance between
S and Ŝ in terms of words.

When the information is coming from multiple streams, or
when there are multiple hypothesis models available, it can be ad-
vantageous to employ multi-stream decoding techniques [9]. In
multi-stream decoding each sub-unit model mj is comprised of
ne sub-models mj = {mi

j |i ∈ [1, ne])} associated with the sub-
unit level at which the recombination of the input streams should
be performed.

We consider the case of state-locked multi-stream decoding,
where all sub-models are forced to be at the same state. In that
case, the simplest multi-stream strategy is to use the Viterbi algo-
rithm in an HMM where the emission distribution are estimated as
follows:

p(xt|qt) =

neX

i=1

wi · pi(xt|qt) (4)

where pi(xt|qt) represents the emission distribution of sub-model
mi at time t and wi represents the reliability of expert ei.

5. BOOSTING HMMS

Boosting had originally been defined for classification tasks, and
recently it was generalised to the regression case (see [4] for an
overview). However, the amount of research in the application of
boosting to sequence learning has been comparatively small. In
[10] boosting was used in a speech recognition task. That partic-
ular system was HMM-based with ANNs for computing the pos-
terior phoneme probabilities at each state. The boosting itself was
performed at the ANN level, using AdaBoost with confidence-
rated predictions and in which the sample loss function was the
frame error rate. The resulting decoder system differed from a
normal HMM/ANN hybrid in that each ANN was replaced by a
mixture of ANNs. Boosting was also applied in a similar context
in [3]. The authors of the latter further describe a word error rate
boosting scheme, which, however does not manage to produce as
good results as the other described schemes. In our view, which
is supported by the experimental results, this could have been par-
tially due to the lack of a temporal credit assignment mechanism
such as the one we present in section 3.

The work presented here explores the use of boosting for HMMs
that employ Gaussian Mixture models at the state level. Similarly
to [3], we use sentence-level labels as the basic error measure.
However, we employ a probability distribution over the frames
during training, as discussed in Section 3.

With respect to the sentence-level error measure, we needed
something related to the word error rate. However the word error
rate for any particular sentence takes values in [−1,∞). For this
reason we employ a bijective map f : [0,∞) → (−1, 1]

f(x) = 2e−ηx − 1, (5)

where x is the word error rate. When f(x) = 1, an example
is considered as classified correctly and when f(x) = −1, the
example is considered to be classified incorrectly. Increasing the
parameter η increases the sharpness of the transition. This function
is used for l(·) in equation (1).

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 2 3 4 5 6 7 8 9 10

W
E

R

Boosting iterations

Train results

boost
gamma 1
gamma 2
gamma 4
gamma 8

gamma 16
baseline

Fig. 1. Training word error rates for various values of gamma,
compared with a baseline system and the previous boosting ap-
proach.

 6.4

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 2 3 4 5 6 7 8 9 10

W
E

R

Boosting iterations

Test results

boost
gamma 1
gamma 2
gamma 4
gamma 8

gamma 16
baseline

Fig. 2. Test word error rates for various values of gamma, com-
pared with a baseline system and the previous boosting approach.

6. EXPERIMENTAL RESULTS

We experimented on the OGI Numbers 95 (N95) data set [11].
This data set was converted from the original raw audio data into
a set of features based on Mel-Frequence Cepstrum Coefficients
(MFCC) [12] (with 39 components, consisting of three groups of
13 coefficients, namely the static coefficients and their first and
second derivatives) that were extracted from each frame. The data
contains 27 distinct phonemes, consisting of 3233 training utter-
ances and 1206 test utterances. The feature extraction and phonetic
labelling is described in more detail in [13].

The HMMs were composed of three hidden states in a left-
to-right topology and the distributions corresponding to each state
were modelled with a Gaussian Mixture Model employing 10 Gaus-
sian distributions. 1

1These values are within the range commonly employed in speech
recognition tasks where the data is composed of MFCC features. There
was no attempt to perform cross-validation in order to choose those hyper-
parameters optimally.

V - 503

➡ ➡

The experiment was performed as follows: firstly, a set of
HMMs e0, composed of one model per phoneme, was trained us-
ing the automatically generated phonetic labels. This has the role
of a starting point for the subsequent expert models. At each boost-
ing iteration t we take the following steps: firstly, we sample with
replacement from the distribution of training sentences. We create
a new expert et, initialised with the parameters of e0. The expert is
trained on the sentence data using the Viterbi approximation. The
frames of each sequence carry an importance weight ψ , which is
factored into the training algorithm. After training, all sequences
are decoded with the new expert. The weights of each sentence is
increased according to (5), with η = 10. For each erroneously de-
coded sentence we calculate the edit distance using a shortest path
algorithm. All frames in which the inferred state belonged to one
of the words that corresponded to a substitution, insertion, or dele-
tion are then marked. The weights of marked frames are adjusted
according to (2). The parameter γ corresponds to how smooth we
want the temporal credit assignment to be.

In order to evaluate the combined models we use the multi-
stream method described in equation (4), where the weight of each
stream is given by

wi =
βiPne

j βj

. (6)

In this setting, unlike usual multi-stream settings, the same
data is used in each and every stream. However, a different model
corresponds to each stream. 2

Experimental results comparing the performance of the above
techniques to that of an HMM using segmentation information for
training are shown in Figure 1, for the training data and figure 2
for the test data. The figures include results for the baseline sys-
tem and our previous results with boosting at the phoneme level.
We have included results for values of γ ∈ {1, 2, 4, 8, 16}. Al-
though we do not improve significantly upon our previous work
with respect to the generalisation error, we found that the con-
vergence of boosting in this setting is significantly faster. While
boosting with pre-segmented phoneme examples had previously
resulted in a reduction of the error to 3% after approximately 30
iterations, the sentence example training, combined with the error
probability distribution over frames, converged to the same error
after approximately 6 iterations.

7. DISCUSSION

In this paper we presented a method for the application of boost-
ing to complete HMMs, rather than at the frame level. State-locked
multi-stream decoding techniques were investigated for model re-
combination in a continuous speech recognition task. We observed
a significant reduction in training error and a reduction in general-
isation error with a statistical significance level of 85%, the same
as our previous approach.

While the two boosting approaches are equivalent in the lat-
ter respect, in our view the sentence training approach represents
a more interesting alternative, for a number of reasons. Firstly,
we are minimising the word error rate directly, which is a more

2In an unconstrained multi-stream setting we would have a model
whose state-space would correspond to the Cartesian product of the state-
spaces of individual sub-models. However, because of computational con-
straints, we consider a sub-space where all models are constrained to be at
the same state.

principled approach since we optimise the real objective. Sec-
ondly, we don’t in principle need to rely on segmentation infor-
mation. Lastly, the temporal probability distribution, derived from
the temporal structure of word errors and the state inference, pro-
vides us with a method to assign weights to parts of the decoded
sequence. Its importance becomes obvious when we compare the
performance of the method for various values of γ. When the dis-
tribution is flat (i.e. when γ = 1), the performance of the model
drops significantly.

In the near future we will attempt to merge the two parameters
η and γ, so that we have a unified framework for sequential deci-
sion making and boosting. We hope to achieve this by expressing
the sample loss of a sentence as an expected value and relating it
to the probability of errors at the frame level.

8. REFERENCES

[1] Christos Dimitrakakis and Samy Bengio, “Boosting hmms
with an application to speech recognition,” in IEEE Interna-
tional Conference on Acoustic, Speech, and Signal Process-
ing, ICASSP, 2004, IDIAP-RR 03-41.

[2] L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L. Mercer, “A
new algorithm for the estimation of hidden markov model
parameters,” in IEEE Inernational Conference on Acoustics,
Speech and Signal Processig, ICASSP, 1988, pp. 493–496.

[3] G. Cook and A. Robinson, “Boosting the performance of
connectionist large vocabulary speech recognition,” in Proc.
ICSLP ’96, Philadelphia, PA, 1996, vol. 3, pp. 1305–1308.

[4] Ron Meir and Gunnar Rätch, “An introduction to boosting
and leveraging,” in Advanced Lectures on Machine Learning,
LNCS, pp. 119–184. Springer, 2003.

[5] Robert E. Schapire and Yoram Singer, “Improved boost-
ing algorithms using confidence-rated predictions,” Machine
Learning, vol. 37, no. 3, pp. 297, 1999.

[6] Yoav Freund and Robert E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to
boosting,” Journal of Computer and System Sciences, vol.
55, no. 1, pp. 119–139, 1997.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-
likelihood from incomplete data via the EM algorithm,”
Journal of Royal Statistical Society B, vol. 39, pp. 1–38,
1977.

[8] A. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Trans-
actions on Information Theory, pp. 260–269, 1967.

[9] A. Morris, A. Hagen, H. Glotin, and H. Bourlard, “Multi-
stream adaptive evidence combination for noise robust
ASR,” Speech Communication, 2001.

[10] H. Schwenk, “Using boosting to improve a hybrid
HMM/neural network speech recogniser,” in Proc. ICASSP
’99, 1999, pp. 1009–1012.

[11] R. A. Cole, K. Roginski, and M. Fanty, “The OGI numbers
database,” Tech. Rep., Oregon Graduate Institute, 1995.

[12] Lawrence R. Rabiner and Biing-Hwang Juang, Fundamen-
tals of Speech Recognition, PTR Prentice-Hall, Inc., 1993.

[13] Johnny Mariéthoz and Samy Bengio, “A new speech recog-
nition baseline system for numbers 95 version 1.3 based on
torch,” IDIAP-RR 16, IDIAP, 2004.

V - 504

➡ ➠

