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ABSTRACT

We present a dynamic graphical model (DGM) model for auto-

mated multi-instrument musical transcription. By multi-instrument

transcription, we mean a system capable of listening to a recording

in which two or more instruments are playing, and identifying both

the notes that were played and the instruments that played them.

Our transcription system models two musical instruments, each

capable of playing at most one note at a time. We present results

for two-instrument transcription on piano and violin sounds.

1. INTRODUCTION

In this paper, we present some results on the problem of multi-

instrument musical transcription. By multi-instrument transcrip-

tion, we mean a system capable of listening to a recording in which

two or more instruments are playing, and identifying which in-

strument is playing which note. The general musical transcription

problem involves listening to a musical piece and producing a rea-

sonable musical score.

A robust automated musical transcription system would have

applications to the music information retrieval (MIR) community,

such as query by humming [1] for example. Good results on au-

tomated musical transcription may also carry over to the related

problem of automated speech recognition.

The current state of the art in automated transcription systems

is still far from a solution to the problem of robustly transcribing

most interesting music. Even the seemingly simple task of tran-

scribing a monophonic recording (a single instrument playing at

most one note) becomes a hard problem once we consider rhyth-

mically expressive performances. There has been some previous

work on the audio-to-score problem (e.g., [2]). In this paper we fo-

cus on the simpler (but still hard) problem of going from an audio

recording to a piano-roll like output (e.g., a MIDI file).

Several authors have recently reported progress on the diffi-

cult problem of transcribing music in which more than one note

is sounding simultaneously (polyphonic transcription) [3] [4] [5].

There has been progress on the problem of instrument classifica-

tion for monophonic recordings [6] [7]. Our work differs from

these efforts in that it attempts to solve both problems simultaneously—

we combine polyphonic transcription and instrument classifica-

tion.

Our transcription system models a simple musically interest-

ing example of multi-instrument polyphonic transcription consist-

ing of two musical instruments, each capable of playing at most
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Fig. 1. A DGM for two-instrument transcription. Shaded nodes

are observed data; unshaded nodes are “hidden” or “latent” vari-

ables.

one note at a time. An example of a musical piece conforming to

this model would be any of J.S. Bach’s Two-part Inventions, where

each part is performed on a different instrument.

We use a dynamic graphical model (DGM) (also known as a

dynamic Bayesian network (DBN) [10]) to model note pitch and

dynamic level envelopes for two monophonic musical instruments.

A key feature of our model is the use of a note-event timbre model

that includes both a spectral model and a dynamic intensity ver-

sus time model (i.e., a time envelope model). We present some

results for two-instrument transcription of synthesized piano and

violin sounds, using sampled acoustic instrument sounds for the

synthesis.

2. MODEL

Figure 1 shows a DGM for a two-instrument transcription sys-

tem. The hidden state variables Intensitym
t and Pitchm

t rep-

resent the instantaneous intensity (i.e., dynamic level) and pitch,

respectively, of instrument m at time t. The observation variables

Audiot represent the observed audio feature data at time t.
The top two hidden chains model the dynamic intensity and

pitch evolution of one instrument (e.g., violin) while the lower two

hidden chains model the dynamic intensity and pitch evolution of

another instrument (e.g., piano). The hidden state variables cor-

respond to the discrete set of allowable intensity and pitch values.

We use the junction tree algorithm to compute the mode of the pos-

terior distribution of intensity levels and notes (the Viterbi path)

[9].
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Fig. 2. A state transition diagram for an instrument characterized

by a constant sound level after the note onset. Five discretized

intensity levels are shown for clarity. Our actual implementation

uses ten intensity levels. The “off” state denotes zero intensity.

3. INTENSITY ENVELOPE TRANSITION MODEL

The timbre of a musical instrument is influenced by both the spec-

tral content, and the way in which the sound level changes over

time. In the piano, the sound level immediately begins decaying af-

ter the initial hammer strike. This is also the case for plucked string

instruments such as the guitar. However, in instruments where en-

ergy is continually supplied during the playing of a note, such as

bowed string instruments, brass instruments, wind instruments and

organs, the sound level fluctuates less during the playing of a note.

We propose two models of intensity envelopes for musical in-

struments. The “constant envelope model” is for instruments char-

acterized by a steadier sound level after the note onset. The “de-

caying envelope model” is for instruments characterized by a grad-

ual sound decay after the note onset.

The constant envelope model is shown in Figure 2. The state

transition diagram in the figure comprises five discretized inten-

sity levels, including the note-off state (zero intensity). Transitions

from the note-off state to any nonzero intensity level are allowed.

Self-loop transitions are allowed on all states. However, any out-

going transition from a nonzero intensity state must return to the

note-off state. Thus, realizations of this state transition model will

always result in note intensity envelopes consisting of a transition

from the note-off state to some nonzero intensity level, followed

by some number of self loops while the note sustains, followed

by a transition back to the note-off state. This model defines a

geometric distribution over note durations. Specifically, if the self-

loop probability is pself , then the probability that we remain at the

same intensity for n time slices is pself (n) = (1 − pself )pn−1
self .

Thus different expected note durations can be modeled by adjust-

ing pself .

The decaying envelope model is shown in Figure 3 for mod-

eling the intensity envelope of instruments characterized by a de-

caying sound level after the note onset. In this model, transitions

from the note-off state to any nonzero intensity level are allowed.

Self-loop transitions are allowed on all states. However, any out-

going transition from a nonzero intensity state must lead to the

next lower intensity state. Thus, realizations of this state transition

model will always result in note intensity envelopes consisting of

a transition from the note-off state to some nonzero intensity level,

followed by some number of self loops, followed by a transition to

the next lower intensity state, and so on, until the note-off state is

reached.

4. PITCH TRANSITION MODEL

We place constraints on the times at which the pitch state can

change. Specifically, pitch state change events within a single note

envelope event should be disallowed. This is done by making the

off level 1 level 2 level 3 level 4

Fig. 3. A state transition diagram for an instrument characterized

by a decaying sound level after the note onset. Five discretized

intensity levels are shown for clarity. Our actual implementation

uses ten intensity levels. The “off” state denotes zero intensity.

pitch state conditional probability distribution a function of both

the previous pitch state and the previous intensity state. In our

model, the pitch state is only allowed to change when the previ-

ous intensity state was the “note-off” state. In particular, the pitch

transition model for instrument m is given by

P (Pitchm
t = j|Intensitym

t−1 = k, P itchm
t−1 = i)

=

(
δ(i, j) if k > 0 (stay in the same state)

T m(i, j) if k = 0 (pitch transition)

where the Intensitym
t−1 = 0 state denotes the “note-off” state.

T m(i, j) represents the pitch transition model for whole note events

for instrument m. That is, T m(i, j) = P (Pitchm
t = j|Pitchm

t−1 =
i). We choose to make T m(i, j) instrument specific to reflect the

fact that the set of allowable pitches can depend on the instrument.

In our current implementation, we set T 1(i, j) = T 2(i, j) so that

instrument classification performance only depend on the intensity

transition model and the observation model (and not on the pitch

ranges of the instruments).

We use a method for specifying the state transition probabili-

ties inspired by Shepard’s notion of the pitch helix [8]. Perceived

musical dissimilarity between two pitches is taken to be propor-

tional to their Euclidean distance on the helix. We can easily con-

struct a transition matrix based on the pitch helix as follows: Let

x(i) and x(j) in R
3 represent the locations of pitches i and j in the

space in which the helix is embedded, where i and j can range over

the K possible pitch values. For each i and j, we set the (i, j)th
element of a K × K matrix T equal to the following Gaussian

kernel evaluated at x(i) and x(j):

T (i, j) = exp(−1

2
(x(i) − x(j))T C−1(x(i) − x(j)))

The rows of T are then normalized to make the matrix stochas-

tic. C is diagonal, with two of the parameters tied to maintain

rotational symmetry about the helix. So, the resulting transition

matrix depends on two scalar parameters.

5. OBSERVATION MODEL

We model a time slice of the magnitude spectrogram as a series of

narrow harmonically-spaced bump functions for each instrument,

uniformly sampled in frequency at the values of the spectrogram

frequency bins. Each harmonic bump is modeled as having a mag-

nitude reflecting both its relative prominence with respect to the

other harmonics and the dynamic level.

Our observation model is motivated by the following Gaussian

process model. Consider one time slice yt(f) of the continuous

spectrum. By continuous spectrum, we mean the spectrum ob-

tained by replacing the DFT of the standard spectrogram with the
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discrete time Fourier transform so that frequency is continuous-

valued. We model the spectrum of a harmonic musical signal as

a series of narrow bump functions that are harmonically spaced.

That is, conditional on the fundamental frequency Pitcht of the

musical signal, we model the spectrum as consisting of a series

of bump functions located at integer multiples of Pitcht. Each

bump function is given a scale parameter αn(Pitcht) that can de-

pend on Pitcht. The motivation for this is that the relative spectral

content of an instrument can depend on what pitch is being played.

The intensity envelope at time t scales all of the harmonics. Our

harmonic spectral model for a single instrument is the following:

yt(f) = Instrument1t (f) + ξ(f)

Instrument1t (f) = Intensity1
t

HX
n=1

αn(Pitch1
t )b(f − nPitch1

t )

where ξ(f) is a zero mean Gaussian noise process and b(f) =
exp(−f2/σ). Our model for two instruments then becomes

yt(f) = Instrument1t (f) + Instrument2t (f) + ξ(f).

A spectrogram time slice gives us yt(f) at the uniformly spaced

frequencies fi, i = 1...N corresponding to the N spectrogram fre-

quency bins. Conditional on the hidden state variables we have the

following Gaussian observation model:

p(Audiot|Intensity1
t , P itch1

t , Intensity2
t , P itch2

t )

= N (yt|µ(Intensity1
t , P itch1

t , Intensity2
t , P itch2

t ), σ
2
ξI),

where Audiot = [yt(f1), ..., yt(fN )]T , µ(Intensity1
t , P itch1

t ,
Intensity2

t , P itch2
t ) = [µ1, ..., µN ]T and

µi = Instrument1t (fi) + Instrument2t (fi).

6. EXPERIMENTS

We present results for two audio clips of synthesized piano and

violin sounds. We used a wavetable MIDI synthesizer so that the

synthesized sounds actually consist of recorded piano and violin

sounds. We take the truth score to be the MIDI file. Clip 1 consists

of several piano and violin notes that have note durations greater

than 0.5 seconds, while clip 2 (taken from Bach’s two-part Inven-

tion #8) consists of note durations of about 0.13 seconds. The input

sound clips can be heard at http://chaos.cnmat.berkeley.edu/

transcription/sounds/. In this experiment, we use the constant en-

velope transition model from Figure 2 for instrument 1 (violin).

We use the decaying envelope transition model from Figure 3 for

instrument 2 (piano). Our expectation is that the decaying enve-

lope model is closer to being a reasonable transition model for a pi-

ano than a violin. The intensity transition probabilities and the αn

harmonic magnitude parameters for each instrument are learned

by an EM-based estimation procedure on a single-instrument ver-

sion of the DGM in Figure 1. The harmonic width parameter σ2

and the pitch transition parameters of C were chosen manually.

We used 10 intensity states for each instrument, discretized

uniformly in log magnitude over a 60 dB dynamic range. The

lowest intensity state corresponds to the note-off event. Any out-

going transition from the note-off event is interpreted as a note-on

event. Performing inference on the DGM to compute the path of

maximum posterior probability therefore gives us explicit note-on

events. Note that thresholding or other post-processing would be

needed to find the note onset events if we had used a continuous

intensity state model. We used the same 12 allowable pitch states

for each instrument, corresponding to the 12 semi-tones from A-

flat below middle C to A-flat above middle C.

We defined a transcription error rate measure that is analogous

to the word error rate used in automated speech recognition and

other transcription systems. We measure the percentage transcrip-
tion error rate as

100
Insertions + Substitutions + Deletions

Total Notes in Score

The insertions, substitutions, and deletions are computed sepa-

rately for each instrument and then summed. Therefore, an instru-

ment misclassification of a note onset event counts as one insertion

and one deletion. Figure 4 shows the estimated note intensity en-

velopes for clip 1. Figure 5 shows the transcription results for clip

1. The transcription error rate was 12.5%. There were 8 notes

total, with a single insertion error (on instrument 1 at around 3

seconds). The system was tested on several other short sound clips

with generally similar results.

The use of an instrument-specific spectral model did not affect

the results on clip 1. However, by using an instrument-specific

spectral model and no time envelope model, the error rate was

50%. We have also found that placing constraints on the points

in time at which pitch changes can occur significantly improves

performance. Specifically consider the model that is obtained by

removing the diagonal edges in Figure 1; this model is known as a

factorial hidden Markov model (FHMM) [9]. In such a model, the

pitch can change at any time. However, pitch changes within the

time envelope of a single note should be disallowed since a time

envelope represents the variation in sound level during the dura-

tion of a single note event. Indeed, the error rate for the simpler

FHMM was 25%.

Clip 2 represents an example in which our results are the poor-

est. With an instrument-specific spectral model the transcription

error rate for this clip was 93.75 %. There were 16 notes total,

with 1 substitution, 14 deletions, and no insertions. The transcrip-

tion error rate for clip 2 with a tied spectral model was 100 %.

Clip 2 differs from the other clips that we tested in having very

short note durations. We believe that the poor performance on clip

2 reflects a poor choice of intensity envelope transition parameters

for the short time scale, as the training data consists of notes of

longer duration. The actual polyphony of clip 2 is also greater

than the two voices modeled because of the fast tempo. We are

currently experimenting with other intensity transition models that

may better suited to modeling short note durations.

7. CONCLUSIONS

We have presented a DGM for automated multi-instrument mu-

sical transcription and presented results for synthesized piano and

violin sounds. Multi-instrument polyphonic transcription is a chal-

lenging problem since it requires a suitable timbre model. A key

feature of our model is a timbre model that includes both a spec-

tral model and a time envelope model, yielding a combined ap-

proach to polyphonic transcription and instrument classification.

Our model also has the feature that computing posterior modes for

the DGM in Figure 1 yields explicit note-on events, as well as dy-

namic level versus time. If we had modeled the intensity state as

being continuous-valued, some kind of post-processing would be

required to estimate the note-on events.
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Fig. 4. Estimated note intensity envelopes for synthesized piano

and violin sounds. Instrument 1 corresponds to the violin, and

Instrument 2 corresponds to the piano. The spectrogram of the

input audio file is shown at the top.

Our model extends immediately to the case of more than two

instruments. However, the complexity for exact inference in a

DGM is exponential in the number of hidden nodes in a time slice

for our class of models. Specifically, for our DGM the time com-

plexity is O(TMKM+1) where T is the number of time slices, M
is the number of hidden nodes per time slice, and K is the number

of states for a hidden node. Thus, if we restrict ourselves to exact

inference, the model is limited in practice to a small number of

instruments. However, there is a large literature on algorithms for

approximate posterior inference in large-scale dynamic graphical

models [10]; these algorithms are directly applicable to our model.
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