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ABSTRACT

We present a multiple pitch tracking algorithm that is based on
direct probabilistic modeling of the spectrogram of the signal. The
model is a factorial hidden Markov model whose parameters are
learned discriminatively from the Keele pitch database [1]. Our
algorithm can track several pitches and determines the number of
pitches that are active at any given time. We present simulation
results on mixtures of several speech signals and noise, showing
the robustness of our approach.

1. INTRODUCTION

Pitch tracking is a fundamental problem in speech and music pro-
cessing, and the design of robust algorithms for single or multiple
pitch determination has been an active topic of research in acous-
tic signal processing [2, 3, 4, 5, 6, 7]. Most pitch extraction algo-
rithms first build a set of nonlinear features (e.g., the correlogram
or the cepstrum) that exhibit special behavior when voiced speech
is uttered and then model this behavior to track pitch. In the pres-
ence of multiple voiced signals that mix additively, it is natural to
consider modeling directly the signals or a linear representation
thereof (such as the spectrogram) in order to preserve additivity
and make it possible to use models for one pitch in order to ex-
tract multiple pitches. In this paper, we work with the magnitude
of spectrogram. The magnitude is not a linear representation, but
because of the sparsity of speech and music signals in the spectro-
gram, it can be well approximated as such [8].

Working directly with the spectrogram requires a detailed prob-
abilistic model for characterizing pitch. In this paper, we consider
a variant of a hidden Markov harmonic model and use the frame-
work of graphical models to build the model, learn it from data
and design efficient inference algorithms [9]. In particular, we use
recent developments from the machine learning literature to cap-
ture the appropriate properties of speech and music; in particular,
we make use of nonparametric priors to capture smoothness of
the spectral envelope, and we improve extraction performance by
using discriminative training of the models [10]. We present the
graphical model in Section 2, the inference algorithm in Section 3
and the learning algorithm in Section 4. In Section 5, we test our
algorithm on a variety of challenging pitch extraction tasks.

This work was supported by a grant from Intel Corporation, and a
graduate fellowship to Francis Bach from Microsoft Research.

2. GRAPHICAL MODEL FOR PITCH EXTRACTION

In this paper, we assume that the speech signals are sampled at
5.5 KHz. Given a real one-dimensional signal xt, t = 1, . . . , T ,
the spectrogram s is defined as the short-time windowed Fourier
transform of x; i.e., the signal x is cut into N overlapping frames
of length M , and the spectrogram s is defined as the N ×P matrix
whose n-th column sn ∈ R

P is the P -point FFT of a windowed
version of the n-th frame.1 In this paper, we model the magnitude
of the spectrogram and refer to the magnitude of the spectrogram
simply as the spectrogram. Since the speech signals are real, the
FFT is symmetric and we only need to consider the first P/2 fre-
quencies.

2.1. Additive model

The input to our pitch tracker is the sequence sn ∈ R
P , n =

1, . . . , N , where N is the number of frames, equal to a constant
times the duration T of the signal x. We use an additive model
for the spectrogram, i.e., if K speakers are potentially present, we
model the n-th frame as the superposition of K signals uk

n ∈ R
P

plus noise, i.e., sn =
∑K

k=1 uk
n + εn. Note that the acoustics are

not additive for the magnitude of the spectrogram; however, since
signals from two different speakers have small overlap [8], the lin-
earity is a reasonable approximation. The advantage of using the
magnitude is that the modeling of the smoothness of the spectral
envelope is easily achieved using spline smoothing techniques, as
described in Section 2.2.

2.2. Harmonic model

We use a harmonic model in the frequency domain, which amounts
to modeling the spectrogram of voiced speech as an amplitude-
modulated comb [3]. We model each speaker k at time frame n
with four variables:

• Voiced/unvoiced: vk
n is a binary variable which is equal to

one if the speaker k utters voiced speech at time n, and equal
to zero otherwise (either non-voiced speech or no speech ut-
tered).

• Pitch: ωk
n is the frequency of the pitch of speaker k at time n,

scaled so that it is equal to the distance between two harmonic
peaks in the spectrogram.

1In simulations, we use frames of length 40ms sampled every 10ms, a
Hanning window and a 512-point FFT.
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Fig. 1. HMM for one speaker for two time frames n and n + 1
(time subscripts are omitted).

• Harmonics: hk
n is a set of vectors of harmonic amplitudes if

the speech is voiced. There is one harmonic vector hk
nω for

each potential pitch value ω. The dimension of hk
nω is equal

to �P/2ω�. Given that the signal is non-voiced (i.e., given
vk

n = 0), then all sets of harmonic amplitudes for all ω are in-
dependent from all other variables, while given that the signal
is voiced and given the pitch ω, the entire set {hknω′, ω′ �= ω}
is independent from other variables.

• Constant term: ck
n is the constant amplitude of non-voiced por-

tions. Given vk
n = 1, ck

n is independent from all other vari-
ables.

The graphical model describing the model for a single speaker
is a simple Hidden Markov model (HMM) and is shown in Fig-
ure 1. The conditional probability distributions that are needed to
fully specify the model reflect the known psychoacoustics and sta-
tistical properties of pitch [11, 2, 3] and are as follows:

• p(vk
n+1|v

k
n) is a constant transition matrix Tv with four ele-

ments.
• p(ωk

n+1|ω
k
n): the pitch is discretized on a grid with nω = 300

elements, and each logarithm of the row of the transition ma-
trix is equal to (up to additive constants) α1(ω

k
n+1 − ωk

n)2 +
α2ω

k
n+1 + α3(ω

k
n+1)

−1. Note that the high number of val-
ues for the discretization of the pitch frequency is necessary in
order to obtain good pitch extraction performance.

• p(hk
nω): for each value of the pitch ω, hk

nω is modelled as the
restriction of a smooth function on [0, P/2]—i.e., a function
with bounded second derivative—to all multiples of ω. That
is, (hk

nω)i is equal to g(iω), where g is a function such that∫
|g(2)|2 is bounded. g is usually referred to as the spectral

envelope [3].
Following [12], hk

nω can thus be modelled as a Gaussian pro-
cess on the line [0, P/2] observed at multiples of the funda-
mental frequency ω; this implies that hk

nω can be written as
hk

nω = Kωak
nω +Tωbk

nω , where Kω is the “kernel matrix” de-
fined as (Kω)ij = ( 1

2
ij min{i, j}− 1

6
min{i, j}3)ω3, and Tω

is a matrix with two columns, one constant and one linear func-
tion of the frequency. The auxiliary variables ak

nω and bk
nω are

normal with mean 0 and covariance matrices (α4Kω+α5I)−1

and α6I .

• The variable ck
n is normal with mean α4 and variance α5.

• Observation model: given ωk
n, hk

n, ck
n and vk

n, the signal uk
n is

equal to B(ωk
n)hk

nωk
n

if vk
n = 1, and equal to ck

ne if vk
n = 0,

where e is the constant vector of all ones. The i-th column of
the matrix B(ω) is a bump centered at frequency iω, defined
as the Fourier transform of the window. See Figure 2. Thus,
voiced speech is modeled as a weighted sum of bumps at mul-
tiples of the fundamental frequency, where the amplitude of
the bump extends to a smooth spectral envelope.

Frequency
i

)( iωh

P/20 ω

Fig. 2. Spectral envelope (dotted) and harmonic model (plain).
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Fig. 3. Factorial HMM for two speakers for two time frames n and
n + 1 (time subscripts are omitted).

2.3. Factorial hidden Markov models

The K models for each speaker can be joined into a single graphi-
cal model, a “factorial HMM,” where the 2K Markov chains evolve
independently (see Figure 3 for the model with two speakers). The
parameter λn is the variance of the Gaussian noise εn at time n.
We assume it has a uniform distribution and it is discretize to an
uniform logarithmic grid with nλ = 10 elements.

2.4. Related models

Our graphical model resembles the models presented previously
in [4], [5], [6] and [7]. In [4] and [5], the graphical model is de-
fined on features rather than on the speech signal directly (or its
spectrogram), which abandons the additive structure of the mix-
ing and makes it more difficult to estimate several pitch tracks.
In [6] and [7], harmonic models are used but most parameters are
not learned from data, and the harmonic model does not include
a smoothness prior which is crucial to avoid pitch halving. Also,
models that are learned from data such as [4] or [5] use maximum
likelihood training while we use discriminative training, which is
more expensive but leads to superior performance (see Section 5).

3. PITCH EXTRACTION

In the following sections, we use the shorthand x to denote the
set of variables (xk

n)k,n for all k and n, while we use the short-
hand xk to denote the set of variables (xk

n)n for all n. If we de-
note z = (ω, v, h, c, λ), then the task of inference is to compute,
given some data s, arg maxz p(z|s). Minimization with respect
to (h, λ) can be done in closed form and thus we are left with the
task of maximizing with respect to (ω, v).
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3.1. One speaker

With one speaker, this is simply inference in an HMM where the
hidden state has a number of values proportional to nω , and the
complexity of inference for a speech of duration T is thus O(Tnω)
for computing potentials and O(Tn2

ω) for the Viterbi algorithm [13].

3.2. Two or more speakers

With m speakers, we have a factorial HMM with 2m uncoupled
Markov chains with nω or 2 states each, thus the complexity of ex-
act inference is O(Tnm

ω ) for computing potentials and O(Tnm+1
ω )

for a structured Viterbi algorithm [13]. Given that searching of
a space of size n2

ω is the most expensive we are willing to af-
ford (since nω is large), we use the following approximate scheme
which is a simple extension of similar schemes used for single
pitch tracking (e.g., [7]):

1. Recursively estimate the m pitches by finding one single
pitch track and subtracting the corresponding estimated har-
monic signals.

2. Construct a pool of pω pitch value candidates for each time
step, by storing local minima in the m Viterbi algorithms of
step 1.

3. Perform exact inference only using the pool of candidates.

4. Perform m local optimizations of a single pitch track given
the other ones.

The algorithm has complexity of O(mn2
ωT ) for the Viterbi

algorithm with single pitch tracks, and O(Tpm
ω ) for the structured

Viterbi algorithm of step 2. In practise, pω is small enough (around
10) so that step 3 is not the bottleneck while being large enough to
yield no significant difference from the setting pω = nω (i.e., no
approximation).

4. LEARNING OF PARAMETERS

If we denote z = (ω, v, h, c, λ), then we have a model for s which
is a latent variable model with latent variable z. In the presence
of “labelled data,” i.e., datasets for which both s and z are avail-
able, there are two different types of training that can be employed,
generative or discriminative.

In this paper, we use pitch-labelled data from the Keele pitch
database [1]. This database has ten different speakers; the pitch
frequency ω and the voicing decision v are available, but neither
the harmonic amplitudes h nor the unvoiced constant amplitude c
are available

We can create artificial labelled training data with several speak-
ers by superposing two distinct signals. In this paper, we consider
mixing of two speakers for training and mixing of two or three
speakers for testing (note that since the parameters are shared by
all speakers in our framework, learning only on two speakers leads
to a pitch extractor that can deal with any number of pitches). We
thus have two sets of hidden variables (ω1, v1), (ω2, v2), one for
each speaker.

4.1. Generative training (maximum likelihood)

In this type of estimation, if we have observations for both x and
the hidden states z, we simply maximize the joint likelihood p(s, z)
of the data (s, z). Since we have a directed graphical model, this
readily decouples in independent parameter estimations for each
conditional distribution [9]. The data from Keele pitch database

do not include the harmonic amplitudes; the harmonic amplitudes
that do not correspond to the pitch value ω (which is observed) do
not play any role in the model, thus they can be left unspecified;
for the harmonic amplitudes corresponding to the observed pitch,
we take h to be the best amplitudes in the least-square sense, i.e.,
hω = B(ω)�(B(ω)�B(ω))−1s.

Although efficient (no inference in an HMM has to be per-
formed for learning), such training, when the final objective of in-
ference is only to estimate the hidden state z and not to also obtain
a model of the observations, is usually outperformed by discrimi-
native training, which directly optimizes the conditional likelihood
p(z|s) [14, 10].

4.2. Discriminative training

Instead of maximizing p(s, z), we maximize the conditional like-
lihood p(z|s). Maximizing the conditional likelihood does not
decouple in a graphical model and thus exact maximum condi-
tional likelihood estimation requires performing many runs of the
inference algorithm for factorial HMMs, even to simply compute
p(z|s). Since exact inference is intractable in those HMMs, we
instead maximize a “pseudo log likelihood” which is defined as
the sum of the log likelihoods of subproblems and exhibits asymp-
totic properties similar to full maximum likelihood [15]. We de-
fined the pseudo log likelihood as follows: the available data is
(ω1, v1, ω2, v2); we let q(ω, ω′, v, v′) denote

q(ω, ω′, v, v′) = max
h1,h2,c1,c2,λ

p(ω, ω′, v, v′, h1, h2, c1, c2, λ).

We maximize with respect to the parameters the log likelihood
defined as:

log
q(ω1, ω2, v1, v2)

∑
ω,v q(ω, ω2, v, v2)

+ log
q(ω1, ω2, v1, v2)

∑
ω,v q(ω1, ω, v1, v)

The maximization is performed through gradient descent, and re-
quires inference in an HMM with a number of states proportional
to nω , as opposed to n2

ω .

5. SIMULATIONS

In this section, we show that the various features that were in-
cluded into our graphical model framework lead to robust perfor-
mance. In all our simulations, training was performed on the first
6 speakers, while testing was performed on the remaining 4 speak-
ers. The metric we use to compare pitch frequencies ω and ω′ is
d(ω, ω′) = 1− e−(ω−ω′)2/σ2

, where σ2 is the empirical variance
of the pitch frequency over the entire training set. This measure is
equivalent to the squared distance for close values and tends to 1
for distant values. We prefer it to the plain squared distance, be-
cause if an estimated pitch is far away from the true pitch, its value
is not relevant and we prefer to have a fixed unit penalty for all
clearly wrong values of the pitch.

The running time for extracting any number of pitches is linear
in the duration of the signals. In our current Matlab implementa-
tion with a 2GHz processor, the running time is 30 times the dura-
tion of the signal for extracting one pitch, while it is 130 times the
duration of the signal for extracting two pitches.

5.1. Effect of smoothing spline prior

For the simple task of pitch determination for independent frames
taken from one speaker, we have compared our approach to an
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voicing pitch error
female - male 22% 0.03

female - female 32% 0.08
male - male 31% 0.07

Fig. 4. Double pitch extraction: voicing decision error rates and
mean pitch estimation errors.
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Fig. 5. Single pitch extraction with noise: voicing decision error
rates (left) and mean pitch estimation errors (right); white noise
(plain), stationary colored noise (dashed), restaurant background
(dotted).

approach without a spline smoothing prior on the harmonic am-
plitudes: with the smoothing spline prior, the average error on the
pitch estimate using the measure defined earlier is equal to 0.28,
while the error for the estimate without smoothing spline prior is
equal to 0.57, and most of the additional errors are due to pitch
halving, which is a well known problem in pitch determination.
In the context of harmonic modeling approaches such as the one
presented in this paper, a priori detailed knowledge of the spec-
tral envelope has been shown to remove the pitch halving ambigu-
ity [3]; the current results suggest that a simple spline smoothing
prior which does not require knowledge of the envelope is also
sufficient to resolve this ambiguity.

5.2. Discriminative vs. generative training

On single pitch tracking experiments, we compared the perfor-
mance of pitch extractors trained discriminatively or generatively.
The pitch extractor trained generatively made an incorrect decision
regarding voicing 27.4% of the time and had a pitch estimation
error of 0.022, while the pitch extractor trained discriminatively
made an incorrect decision regarding voicing only 5% of the time
and had a pitch estimation error of 0.016. Discriminative training
indeed leads to significantly better performance.

5.3. Two speakers

In this set of experiments, we mixed two signals from different
speakers with same energy. In Figure 4 we report incorrect voicing
decision rates and mean pitch estimation errors, with speakers of
different genders.

5.4. Noisy conditions

We also performed experiments in which we added three different
types of noise to the signal: white noise, stationary colored noise
and non-stationary restaurant background noise. We plot the re-
sults as a function of signal-to-noise ratios in Figure 5, illustrating
the robustness to noise of our pitch extractor.

6. CONCLUSION

We have presented an algorithm for multiple pitch extraction based
on graphical models. The use of appropriate prior distributions and
discriminative training leads to robust extraction performance. Im-
portantly, the computational complexity of our algorithm is linear
in the length of the audio segment. Although the running time of
our current Matlab implementation is 130 times slower than real
time, we do not foresee any major obstacles to the design of a more
efficient software implementation that runs in real time.
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