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ABSTRACT

This paper proposes a two-level fusion strategy for audio-visual
biometric authentication. Specifically, fusion is performed at two
levels: intramodal and intermodal. In intramodal fusion, the scores
of multiple samples (e.g. utterances or video shots) obtained from
the same modality are linearly combined, where the combination
weights depend on the difference between the score values and a
client-dependent reference score obtained during enrollment. This
is followed by intermodal fusion in which the means of intramodal
fused scores obtained from different modalities are either linearly
combined or fused by a support vector machine (SVM). Exper-
imental results based on the XM2VTSDB corpus show that in-
tramodal and intermodal fusion are complementary to each other
and that SVM-based intermodal fusion is superior to linear com-
bination.

1. INTRODUCTION

Various researches have suggested that no single modality can pro-
vide an adequate solution for high-security applications. These
studies agree that it is vital to use multiple modalities such as vi-
sual, infrared, acoustic, chemical sensors, and so on.

To cope with the limitations of individual biometrics,
researchers have proposed using multiple biometric traits concur-
rently for verification. Such systems are commonly known as mul-
timodal verification systems [1]. Multicue biometrics helps im-
prove system reliability. For instance, while background noise has
a detrimental effect on the performance of voice biometrics, it does
not have any influence on face biometrics. Conversely, although
the performance of face recognition systems depends on lighting
conditions, lighting does not have any effect on voice quality. As a
result, audio and visual (AV) biometrics has attracted a great deal
of attention in recent years.

Generally, AV fusion can be treated as either a classifier com-
bination problem or a pattern classification problem. Kittler et.
al. [1] proposed a set of fusion rules to combine classifiers. For
example, for those systems that can only provide decisions, a ma-
jority voting method can be used. If the outputs of classifiers are
compatible (e.g., in the form of posterior probabilities), they can
be linearly combined (sum rule) or multiplied together (product
rule). Besides these combination methods, researches have also
suggested to consider the outputs of individual classifiers as fea-
ture vectors and use a classifier such as support vector machines,
binary decision trees, and radial basis function networks to classify
the vectors [2, 3].
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This paper extends our recently proposed multi-sample fu-
sion technique [4] to audio-visual biometric authentication sys-
tems. The technique is different from the conventional ones in
that it divides the fusion process into two stages. In the first stage,
the method assigns a larger weight to the more reliable scores in
a frame-by-frame basis. This weight assignment process is per-
formed on the audio and visual modalities independently. In the
second stage, the weighted sum of the frame-based scores from
the audio and visual modalities are further fused by either the sum
rule or a support vector machine.

The remainder of this paper is organized as follows. Section 2
details the approach to computing the optimal weights for individ-
ual scores, based on the score distribution of independent samples
and the prior knowledge of the score statistics. Section 3 discusses
two types of intermodal fusion: sum rule and support vector ma-
chines. Evaluations of the proposed multi-sample fusion technique
on speaker verification, face verification, and audio-visual biomet-
ric authentication are presented in Sections 4 and 5. Concluding
remarks are provided in the Section 6.

2. INTRAMODAL MULTI-SAMPLE DECISION FUSION

We assume that in each verification session, T (m) normalized scores
[5] can be obtained from modality m, that is

S(m) = {s
(m)
t ∈ �; t = 1, . . . , T (m)}, (1)

where t is the frame index. In the equal-weight fusion approach
[6], the mean score

s̄(m) =
1

T (m)

T (m)∑
t=1

s
(m)
t (2)

is used for decision making.
Instead of assigning an equal weight to all scores, Mak et al.

[4] proposed a zero-sum intramodal fusion approach in which dif-
ferent weights are assigned to different scores. The approach splits
a score sequence into K subsequences:

S(m,k) = {s
(m,k)
t ∈ �; t = 1, . . . , T (m)/K} k = 1, . . . , K.

(3)
The frame-level fused scores are then computed as

ŝ
(m)
t =

∑K

k=1
α

(m,k)
t s

(m,k)
t , (4)

where t = 1, . . . , T (m)/K, and α
(m,k)
t ∈ [0, 1] represents the

confidence (reliability) of the score s
(m,k)
t . The fusion weights
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α
(m,k)
t are made dependent on both the training data (prior infor-

mation) and recognition data (scores):

α
(m,k)
t =

exp{(s
(m,k)
t − µ̃

(m)
p )2/2(σ̃

(m)
p )2}∑K

l=1 exp{(s
(m,l)
t − µ̃

(m)
p )2/2(σ̃

(m)
p )2}

, (5)

where t = 1, . . . , T (m)/K and k = 1, . . . , K . By using enroll-
ment data, the user-dependent prior score µ̃

(m)
p and prior variance

(σ̃
(m)
p )2 are computed as follows:

µ̃(m)
p =

Kcµ̃
(m)
c + Kbµ̃

(m)
b

Kc + Kb
(6)

and

(σ̃(m)
p )2 =

1

Kc + Kb

Kc+Kb∑
k=1

[
s̄(m,k) − µ̃(m)

p

]2

, (7)

where Kc and Kb are respectively the numbers of client’s enroll-
ment utterances and pseudo-impostors’ utterances, µ̃(m)

c and µ̃
(m)
b

are respectively the score means of client’s and pseudo-impostors’
utterances, and s̄(m,k) denotes the mean score of the k-th enroll-
ment utterance. Finally, the mean fused score

ŝ(m) =
K

T (m)

∑T (m)/K

t=1
ŝ
(m)
t (8)

is used for decision making.
A system that uses a single client-independent decision thresh-

old must ensure that all client and impostor scores have values
comparable to the threshold. This requirement can be fulfilled by
normalizing the scores so that they fall into a predefined range.
One possible approach (called Z-norm [7]) shifts and scales the
impostor scores so that their mean and variance become zero and
unity, respectively. More specifically, the claimant’s score s̄(m) in
Eq. 2 or ŝ(m) in Eq. 8 is normalized:

s(m)
norm =

s(m) − µ
(m)
b

σ
(m)
b

m ∈ {A, V } and s ∈ {s̄, ŝ}, (9)

where µ
(m)
b and σ

(m)
b are respectively the mean and standard devi-

ation of client-dependent impostor scores. These impostor scores
can be obtained during training by testing a client model against
nontarget observations.

3. INTERMODAL DECISION FUSION

There are many ways to combine the scores of multiple modali-
ties. Typical examples include (1) sum rule and product rule in
rule-based fusion; and (2) support vector machines, multilayer per-
ceptrons, binary decision trees in learning-based fusion. Research
has shown that that the sum rule and support vector machines are
generally superior [2, 3, 8, 9].

3.1. Sum Rule

Given the audio score s(A) and visual score s(V ), the audio-visual
score s is obtained by linearly combining the two scores:

s = βs(A) + (1 − β)s(V ), (10)

where β is a combination weight that can be computed using train-
ing data or made dependent on the quality of audio or visual data
[10–12]. The audio and visual scores must have the same range for
the fusion to be meaningful. This can be achieved by normalizing
the scores, as in Eq. 9.

3.2. Support Vector Machines

A support vector machine (SVM) [13] is a binary classifier that
maps input patterns xi ∈ �d to output labels yi ∈ {−1, 1}, where
i = 1, . . . , l, and l is the number of patterns. Generally, an SVM
has the form

f(x) =
∑
j∈Ω

αjyjK(x,xj) + b, (11)

where αj are the Lagrange multipliers, Ω contains the indexes to
the support vectors for which αj �= 0, b is a bias term, x is an
input vector to be classified, and K(x,xj) is a kernel function.
The most common kernels are:

• Polynomial:

K(x,xj) = (x · xj + 1)p, p > 0; (12)

• Radial Basis Function:

K(x,xj) = exp(−‖x − xj‖
2/2σ2). (13)

For audio-visual biometrics, x is typically composed of audio
and visual scores (i.e. x = [s

(A)
norm s

(V )
norm]T ) and decisions are

based on whether the value f(x) is above or below a threshold.
Research has found that the polynomial kernel is superior to the
RBF kernel for audio-visual fusion [2].

4. EXPERIMENTS

4.1. Audio-Visual Data Sets

The XM2VTSDB corpus [14] was used in the evaluations.
XM2VTSDB is an audio-visual corpus designed for biometric re-
search. The corpus consists of the audio and video recordings
of 295 subjects taken over a period of four months. We adopted
Configuration II as specified in [14] in the evaluation. More pre-
cisely, the database was divided into 200 clients, 70 impostors
(part of the 95 impostors in DVD003b) for testing, and 25 pseudo-
impostors (the remaining impostors in DVD003b) for finding de-
cision thresholds or other system parameters. For each client, the
first two sessions were used for training, and the last session was
used for testing. Each client was impersonated by 70 impostors
using the audio and video data of the four sessions.

4.2. Preprocessing of Audio Files

Because the original audio files were captured in a quiet, controlled
environment using a high-quality microphone, the equal error rate
(EER) using the audio data alone is very low (about 0.7%); as a re-
sult, performing audio-visual fusion was unnecessary. Therefore,
coder distortion and factory noise were introduced to the sound
files in an attempt to simulate a more realistic acoustic environ-
ment.

The audio files in the corpus were down-sampled from 32kHz
to 8kHz. The down-sampled PCM files were transcoded by a GSM
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codec. Factory noise (“factory1.wav” of the NOISE92 database)
was added to the test files at a signal-to-noise ratio of 1dB. Note
that the addition of noise was applied to the test files only; the
training files were only down-sampled and GSM-transcoded. This
introduces acoustic mismatch between the training and testing files.
Nineteen MFCCs and their time derivative (delta MFCCs) were
extracted from the files using a 28ms Hamming window at a rate
of 71Hz.

We used the training sessions of 200 client speakers in the
speaker set to create a 128-center background model. The back-
ground model was then adapted to speaker models using MAP
adaptation [5]. As defined in Configuration II of XM2VTSDB,
two sessions (i.e., four utterances) per speaker were used for model
training. Cepstral mean subtraction (CMS) was performed on all
MFCCs before they were used for training, testing, and evaluation.

4.3. Preprocessing of Video Files

Similar to audio files, the quality of video files in the corpus was
also very good, making audio-visual fusion unnecessary (as face
verification on the original video data already approaches 0% EER).
As a result, distortion was introduced to the video sequences us-
ing PhotoShop Version 7.0 as follows. First, each of the AVI files
in the corpus was converted into a sequence of high-quality JPEG
files with 720 × 576 pixels. Second, the frame rate was reduced
to one frame per second; for each frame, the JPEG images were
down-sampled to 176 × 144 pixels. Third, the images was blurred
by setting the “Gaussian Blur” of PhotoShop to 1.0. Finally, Gaus-
sian noise was added to the image by setting the “Gaussian Noise”
of PhotoShop to 3.0.

The noise-added image sequences were input to an Identix’s
Face Verification SDK to locate the head and compute the scores,
which have a range of 0 to 10. The higher the score, the more
likely the claimant is genuine.

4.4. Audio-Visual Multi-Sample Fusion

We assumed that one utterance and one video shot can be obtained
from the claimant in a verification session. The utterance and the
video shot were divided into two equal-length subutterances and
two equal-length subvideo shots, i.e., K = 2 and m ∈ {A, V } in
Eq. 3, where A represents the audio channel and V the video chan-
nel. Feeding these subutterances and subvideo shots to the speaker
verification system and the face verification system (FaceIT) gives
two streams of audio scores and two streams of visual scores. We
applied intramodal fusion to the two audio score streams and also
to the two visual score streams independently to obtain the mean
of the fused audio scores, ŝ(A), and the mean of the fused vi-
sual scores, ŝ(V ). These scores were further normalized according
to Eq. 9 to ensure that they have the same range. The client-
dependent fusion parameters, including the prior scores and prior
variances (µ̃(m)

p ,(σ̃(m)
p )2; m ∈ {A, V }), were obtained by feed-

ing the utterances and video shots of 25 pseudo-impostors to the
client and background models.

The normalized scores of every clients and of the 25 pseudo-
impostors were used for training a second-degree polynomial SVM,
i.e. p = 2 in Eq. 12. We used the training data of all clients
and all pseudo-impostors to obtain 400 clients scores (2 × 200)
and 40, 000 pseudo-impostors scores (8 × 25 × 200) and used
these scores to train a client-independent SVM. Because a client-
independent SVM was used, Z-norm was applied to all of the audio

and visual scores to ensure that the decision threshold is appropri-
ate for all clients.

During verification, a total of 400 client trials (200 clients × 2
utterances per client) and 120,000 impostor attempts (200 clients
× 75 impostors per client × 8 utterances per impostor) were used
to test the system.

5. RESULTS AND DISCUSSIONS

Table 1 shows the EERs of speaker verification and face verifica-
tion using different types of intramodal multi-sample fusion tech-
niques described in Section 3. The results show that (1) zero-sum
fusion generally performs better than equal-weight fusion and (2)
Z-norm helps lower the EER of both type of fusion.

Table 2 summarizes the error rates obtained by applying audio-
visual multi-sample fusion with β in Eq. 10 set to 0.5, and Fig. 1
plots the corresponding DET curves. The results show that zero-
sum fusion always performs better than equal-weight fusion. The
results also show that applying intermodal fusion (either linear
combination or SVMs) on intramodal fused scores can further re-
duce the EERs. Figure 2 plots the decision boundary created by the
sum rule and the second-degree polynomial SVM. It shows that the
SVM can create a nonlinear boundary to separate the client scores
from the impostor scores, which results in lower error rates.

It is of interest to compare the proposed two-level fusion ap-
proach with the multi-frame–multi-expert system proposed in Czyz
et al. [15]. In their system, two different face verification algo-
rithms were applied to the same facial sequence to create two set
of scores. The frame-based scores were then fused using the mini-
mum rule to obtain two minimum scores, which were subsequently
fused using an SVM. The multi-frame part of [15] can be consid-
ered as a special case of our multisample fusion because when
µ̃

(m)
p in Eq. 5 is large, α

(m,k)
t in Eq. 4 will be close to 1 for small

scores and close to 0 for large scores, which has the effect similar
to the minimum rule.

6. CONCLUDING REMARKS

This paper has presented an audio-visual biometric authentication
system. A novel two-level fusion technique that fuses the scores
obtained from speaker and face models was detailed. The pro-
posed technique is general and is applicable to multimodal bio-
metric systems. This is evident by the encouraging experimental
results based on the XM2VTSDB database. It was found that an
error rate reduction of up to 89% can be achieved when the pro-
posed fusion technique is applied to fuse the scores derived from
speaker models and face models.
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Fig. 1. DET plots showing the performance of the sum rule and
SVMs in fusing the audio and visual scores. EW stands for equal-
weight fusion and ZS stands for zero-sum fusion. EW+Znorm
means that Z-norm was performed on the fused scores using equal
weight fusion. A similar definition applies to ZS+Znorm.
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Fig. 2. Decision boundary created by the sum rule (dotted) and a
second-degree polynomial SVM (solid). Circles (◦) and Crosses
(×) represent clients’ and impostors’ attempts, respectively.
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