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ABSTRACT

Time-frequency (TF) signal decompositions provide us with am-
ple information and extreme flexibility for signal analysis. By ap-
plying suitable processing on the TF decomposition parameters,
even subtle signal characteristics can be revealed. In many real
world applications, identification of these subtle differences make
a significant impact in signal analysis. Particularly in classification
applications using TF approaches, there may be situations where
a localized high discriminative signal structure is diluted due to
the presence of other overlapping signal structures. To address
this problem we propose a novel approach to construct multiple
time-width vs frequency band mappings based on the energy de-
composition pattern of the signal. These mapping are then ana-
lyzed to locate the highly discriminative features for classification.
Initial results with two real world biomedical signal databases (1)
Vibroarthrographic (VAG) signals and (2) Pathological speech sig-
nals, indicate high potential for the proposed technique.

1. INTRODUCTION

Time-frequency (TF) transformations have significantly contributed
towards complex signal analysis and automatic classification. In
classification applications using TF approach, it is often a small
area or pockets of areas in the TF plane that actually exhibit the
difference between the classes of signals. Within these small areas,
there may be overlapping multiple signal components with varying
discriminative characteristics. The overall discriminative power of
the area is normally decided by the high energy signal components
which dilute the discriminative characteristics of less energy signal
components. It may so happen that a high discriminative but less
energy component is masked by a less discriminative but high en-
ergy component. Typical biomedical signals contain a mixture of
coherent and non-coherent signal structures with varying localized
overlaps. Using some criteria, if we can separate these localized
overlapping structures, it may lead to a better understanding of the
signal thereby to extract high discriminative features for classifi-
cation applications.

In general, all real world signals contain both coherent and
non-coherent structures. Coherent structure have definite TF lo-
calization unlike the non-coherent structures. Any iterative de-
composition algorithm such as matching pursuits with TF dictio-
naries model the coherent structures during the initial iterations as
they correlate well with the dictionary elements. The non-coherent
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structures on the other hand are broken into finer and finer struc-
tures till the information is diluted across the whole dictionary [1].
The contribution of coherent and non-coherent structures in a sig-
nal decide the energy capture pattern of the decomposition algo-
rithms.

The previous work [2] of the authors, introduced a novel time-
width vs frequency band mapping (constructed from the decom-
position parameters) to identify the high discriminative TF tilings
between different classes of signal using Local Discriminant Bases
(LDB) algorithm. The proposed work uses a similar mapping,
however splitting it into multiple mappings for identifying better
discriminatory features.

The paper is organized as follows: Section II covers method-
ology consisting of adaptive time-frequency transform, multiple
TFD slices, multiple sn vs fn mappings, databases, feature extrac-
tion and pattern classification. Results and discussion are given in
Section III and conclusions in Section IV.

2. METHODOLOGY

2.1. Adaptive Time-frequency Transform (ATFT)

The signal decomposition technique used in this work is based on
the matching pursuit (MP) [1] algorithm. MP is a general frame-
work for signal decomposition. The nature of the decomposition
varies according to the dictionary of basis functions used. When
a dictionary of TF functions is used, MP yields an adaptive time-
frequency transformation [1]. In MP any signal x(t) is decom-
posed into a linear combination of K TF functions g(t) selected
from a redundant dictionary of TF functions as given by:

x(t) =

K−1∑
n=0

an√
sn

g

(
t − pn

sn

)
exp {j(2πfnt + φn)} , (1)

where an is the expansion coefficient, the scale factor sn also
called as octave or time-width parameter is used to control the
width of the window function, and the parameter pn controls the
temporal placement. The parameters fn and φn are the frequency
and phase of the exponential function respectively. The signal
x(t) is projected over a redundant dictionary of TF functions with
all possible combinations of scaling, translations and modulations.
The dictionary of TF functions can either suitably be modified or
selected based on the application in hand. In our technique, we
are using the Gabor dictionary (Gaussian functions) which has the
best TF localization properties. At each iteration, the best corre-
lated TF functions to the local signal structures are selected from
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Fig. 1. Time-width vs frequency band mapping

the dictionary. The remaining signal called the residue is further
decomposed in the same way at each iteration subdividing them
into TF functions.

2.2. Multiple TFD slices

As explained in Section 1, in the initial iterations, the ATFT algo-
rithm captures the coherent signal structures which have correlated
TF dictionary elements and then as the number of iterations grows,
it tries model the non-coherent structures by breaking them finer
and finer till the information is diluted across the whole dictionary.
The energy capture pattern can be extracted from the normalized
decomposition parameter an. In order to explain how this energy
capture pattern can be utilized to extract overlapping signal struc-
tures, let us take an example of a synthetic signal y(t) which is
composed of a sinusoid, two chirps and random noise. The signal
y(t) is given by:

y(t) = w1s(t) + w2c1(t) + w3c2(t) + w4r(t) (2)

where s(t) represent the sinusoid at approximately Fs/4, c1(t) is a
linear chirp with increasing frequency cutting the sinusoid, c2(t) is
another linear chirp with decreasing frequency again cutting both
the sinusoid and c1(t). r(t) represents the random noise. The
weight factors w1,2,3,4 are (1, .1, .01, .001) respectively. We per-
formed the ATFT decomposition (1000 iterations) of y(t) using a
Gabor dictionary. Figures 3(a) and 3(b) show y(t) in time domain
and TF domain (spectrogram is used inorder to show all the three
components at the same time). Here we deliberately introduced en-
ergy differences between the components so as to demonstrate the
significance of energy capture pattern. Most of the times, the first
few iterations capture significant amount of signal energy (coher-
ent structures). Thereafter with the increase in the number of itera-
tions we move from modeling coherent structures to non-coherent
structures. The energy capture pattern of the ATFT decomposi-
tion for y(t) is shown in Fig. 2 (the first 50 iterations). The curve
represents the normalized energy captured per iteration. We can
see the energy captured per iteration drops as we move along the
iterations. In this work as an example we split the energy cap-
ture pattern into 4 parts i.e. (E1) the number of iterations at which
the energy captured per iteration drops to 10% of its initial value
(initial value= 1), (E2) the number of iterations between 10% of

initial value and 1% of initial value, (E3) the number of iterations
between 1% of initial value and 0.1% of initial value, and (E4) the
number of iterations between 0.1% of initial value to the end of
decomposition.
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Fig. 2. Energy capture pattern of the sample signal y(t).

Following the energy capture pattern we accumulate the TF
functions into the above explained four parts (E1-4). For this ex-
ample, we had 5 TF functions for E1, 9 TF functions for E2, 16 TF
functions for E3 and 970 TF functions for E4. The number of TF
functions will give an idea that almost 99% of the signal energy
needs only 30 (1 to E3) TF fucntions, whereas the remaining 1%
signal energy (mostly noise like strutcures) needs 970 TF func-
tions or more. Using these 4 sets of TF fucntions we construct 4
different TFDs. i.e. splitting the original TFD of y(t) into 4 TFDs
based on the energy capture pattern. The corresponding 4 TFDs
are shown in Figs. 3(c), 3(d), 3(e) and 3(f). If we closely look at
the TFDs, we can see the TFD in Fig. 3(c) showing the sinusoid
s(t) alone, the TFD in Fig. 3(d) shows the disappearing sinusoid,
the TFD in Fig. 3(e) shows the evolving chirp c1(t) signal from the
sinusoid background and the TFD in Fig. 3(f) showing a stronger
but noisy chirp c1(t), a faint evolving chirp c2(t) and the random
noise. It is obvious to see that TFDs 3(c) to 3(f) are better individ-
ual representations of the signal components than the combined
TFD 3(b). In this example if it so happens that one of the com-
ponents that was masked by the overlapping strong component is
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Fig. 3. (a) sample signal y(t), (b) TFD of the sample signal, (c)
TFD of sample signal with TF functions of E1, (d) TFD of sample
signal with TF function of E2 (e) TFD of sample signal with TF
functions of E3 and (f) TFD of the residue signal

the discriminator that we are looking for, then the proposed tech-
nique of generating multiple TF mapping using the energy capture
pattern will be of immense help. Here it should be noted that the
energy split shown in this example is not the best to show all the
components individually and separately. This is just to give an
idea about the possiblity of using the energy capture patttern for
removing overlapping structures in complex situations. Also this
approach may not work in all situations unless there are hidden
signal structures either with (a) different energy contribution or
(b) different contributions from coherent and non-coherent struc-
tures or both (a) and (b). Extending this same concept of multiple
TF mappings, we now apply it on a novel time-width vs frequency
band mapping as will be explained in the next Section 2.3.

2.3. Multiple sn vs fn mappings

In order to effectively analyze for classification applications, the
ATFT signal decomposition parameters need to be rearranged in a
pseudo dictionary format. There are five parameters as explained
in Section 2.1 viz. an, sn, fn, pn and φn that represent the index
of each of the dictionary element. After a signal is decomposed
into TF functions, we group the TF functions with the time-width
parameter sn in X axis and the the fn parameter in the Y axis.
In order to reduce the computational complexity instead of using
all the possible values of the fn parameter we break the frequency
range into M bands only. whereas sn takes all the possible values
(21..14) depending on the length of the signal. Each combination of

sn with one of the M frequency bands form a cell which contains
the cumulative normalized energy of all the TF functions falling
in that particular combination of sn and frequency band. The left
side of the Fig. 1 shows a sample time-width vs frequency band
mapping. In the proposed work we used 4 frequency bands, which
means we transform the decomposition parameters of a signal into
14 time-widths (sn) vs 4 frequency band mapping.

From this time-width vs frequency band mapping we can read-
ily obtain the energy distribution of the signal in terms of the time-
width and frequency band (center frequency) decomposition pa-
rameters. Depending upon the application one can choose say
K number of cells that covers an area corresponding to certain
amount of signal energy. This area will provide the sn and fn

ranges which are significant for that particular application. This
area can be arrived by averaging the time-width vs frequency band
of N sample signals. For classification applications this can be
done using LDB as demonstrated in authors previous work [2].
Considering the benefits of multiple TFD slices in signal analysis
as explained in Section 2.2, instead of using one time-width vs fre-
quency band mapping that covers all the signal energy, we slice it
into L time-width vs frequency band mappings as shown in Fig. 1
(L = 4). This L sliced time-width vs frequency band mappings
are expected to separate out the overlapping energy distribution of
the TF functions based on the energy capture pattern and thereby
enhance the discriminatory power of the cells. We performed clas-
sification on two biomedical signal databases to verify the effec-
tiveness of the proposed technique of splitting the time-width vs
frequency band mapping.

2.4. Databases

(1) Vibroarthographic (VAG) signals: These are the vibration sig-
nals emitted from the human knee joints during an active move-
ment of the leg and can be used to detect the early joint degener-
ation or defects. Extensive work [3] has been done using time-
frequency approach in analyzing these signals. Few important
characteristics of the VAG signals which make them difficult to
analyze are as follows: (i) Highly non-stationary, (ii) Varying fre-
quency dynamics, and (iii) Multi-component signal. The database
consists of 36 signals with 19 normal and 17 abnormal signals.
(2) Pathological speech signals: These are speech signals recorded
from the pathological and normal talkers in a sound-attenuating
booth at the Massachusetts Eye and Ear Infirmary. All signals
were sampled at 25 kHz. The signals were the first sentence of
the rainbow passage, ’when the sunlight strikes rain drops in the
air, they act like a prism and form a rainbow’. More details on the
classification of this database can be found in author’s previous
work [4]. The database used in this study consists of 30 signals
with 15 normal and 15 pathological signals.

2.5. Feature Extraction and Pattern Classification

Signals from both the databases were decomposed using the ATFT
algorithm (5000 iterations) as explained in Section 2.1. For each
signal, 4 time-width vs frequency band mappings were created us-
ing the decomposition parameters. The energy split used for gen-
erating these 4 mappings were same as the one used in the ex-
ample of synthetic signals (E1-4). In these 4 mappings, each row
of the mapping represents the signal energy distribution over all
time-widths for a particular band of frequencies. Let us name the
mappings as ME1, ME2, ME3 and ME4 and the frequency bands
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as F1, F2, F3 and F4 as shown in Fig. 1. Now for each com-
bination of MEx and Fx we extract P × 14 energy values from
the cells as feature matrix, where P is the number of signals in
the database. From the 16 combinations of MEx and Fx, only
non-zero feature matrices are used for classification. In order to
compare the results with the original non-split time-width vs fre-
quency mappings (let it be ME5), another set of 4 feature matrices
were generated using the same procedure. When tested with the
Ho-Kashyap [5] algorithm, most of these 20 combinations (MEx
and Fx) for both the databases favored non-linear separability to
achieve maximum classification accuracies. However, as the main
focus of the proposed technique is to demonstrate the relative im-
provement in discrimination between the split and non-split time-
width vs frequency mappings, we restrict our analysis to a linear
classifier. The extracted features were fed to a Linear Discriminant
Analysis (LDA) based classifier using SPSS [6]. The classification
accuracy was validated using the leave-one-out method which is
known to provide a least bias estimate.

3. RESULTS AND DISCUSSION

A two stage classification was performed for the VAG database.
In the first stage, we performed a two group classification classi-
fying the VAG signals into normal and abnormal. Table 1 shows
the highest classification accuracy achieved out of the 20 combina-
tions of MEx and Fx. We observed an overall classification accu-
racy of 88.9% using leave-one-out (Cross. V) based LDA for the
combination of ME4 and F3. This is higher than the classification
accuracies reported by existing works for this database. There is
no difference in the classification accuracy comparing it with the
combination of non-split ME5F3. This is because F3 is non zero
only for ME4 which means, there is no overlap in F3. So eventu-
ally ME4F3 and ME5F3 were the same. The results also gave a
clue that the discriminatory information between normal and ab-
normal lies in F3.

Table 1. Table showing 2 group classification accuracy achieved
for the VAG database. Cross.V = Leave-one-out method LDA, %
= Percentage of classification

Method Groups Normal Abnormal Total
Cross.V Normal 15 4 19

Abnormal 0 17 17
% Normal 78.9 21.1 100

Abnormal 0 100 100

We now performed the second stage of classification on the 17
abnormal VAG signals. The abnormal VAG signals in the database
are from different kinds of knee pathologies. Chondromalcia patell-
a (CMP) [3] is one of the pathologies which has four categories (I,
II, III and IV) of grading based on the severity. It is a difficult
task to classify them by their gradings using the VAG signals. Out
of the 17 abnormal signals, 10 were CMP signals. We performed
a three groups classification on this 10 signals viz. grade(I and
II), grade (II and III) and grade (III and IV). We observed a per-
fect classification of 100% using leave-one-out based LDA for the
combination of ME2 and F1. None of the other combinations in-
cluding the non-split ME5F1 could achieve 100% classification.
This result explains the fact that splitting the time-width vs fre-
quency band mappings does enhance the discriminatory power and
also indicates the discriminatory features for CMP lies in the ME2
and F1 mapping.

Similarly we performed a 2 group classification (normal and
pathological) for the pathological speech database. Table 2 shows
the highest classification accuracy achieved out of the 20 com-
binations of MEx and Fx. An overall classification accuracy of
93.3% was achieved using the leave-one-out based LDA. The re-
ported classification is for the combination of ME1F1 and non-
split ME5F1. In which case we observe the classification accu-
racy to remain same with or without splitting the time-width vs
frequency mapping. However the results give a clue that the dis-
criminatory information lies in ME1 and F1.

Table 2. Table showing the 2 group classification accuracy
achieved for the pathological speech database. Cross.V - Leave-
one-out method LDA, % = Percentage of classification

Method Groups Normal Pathological Total
Cross.V Normal 13 2 15

Pathological 0 15 15
% Normal 86.7 13.3 100

Pathological 0 100 100

4. CONCLUSIONS

Enhancing the discriminatory power of the TF representations us-
ing a TFD splitting approach was proposed. The technique was ex-
plained using a synthetic signal and two real world signal databases.
Using the technique on the VAG database showed a significant
improvement in the sub classification of abnormal signals. Al-
though the results are inconclusive for the real world databases,
this approach may better suit for identifying finer discriminatory
features inside global classifications. Adaptively choosing the en-
ergy split might improve the significance of the proposed tech-
nique. Future work involves in arriving at a suitable energy split
ratio based on the nature of the signal, increase the number of fre-
quency bands and extract visual feature treating the time-width vs
frequency mapping as an image.
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