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ABSTRACT

Articulatory feature models have been proposed in the au-
tomatic speech recognition community as an alternative to
phone-based models of speech. In this paper, we extend
this approach to the visual modality. Specifically, we adapt
a recently proposed feature-based model of pronunciation
variation to visual speech recognition (VSR) using a set of
visually-salient features. The model uses a dynamic Bayes-
ian network to represent the evolution of the feature streams.
A bank of SVM feature classifiers, with outputs converted
to likelihoods, provides input to the DBN. We present pre-
liminary experiments on an isolated-word VSR task, com-
paring feature-based and viseme-based units and studying
the effects of modeling inter-feature asynchrony.

1. INTRODUCTION

Traditionally, visual speech is modeled as a single stream of
contiguous units, each corresponding to a hidden phonetic
state. These units are defined by mapping several visually
similar phonemes to a single viseme. However, a many-to-
one mapping does not always exist, as the appearance of the
mouth during phone production can be heavily influenced
by the surrounding context. This often occurs when articu-
lators not primarily involved in the production of the current
phone evolve asynchronously from the primary articulators.
Figure 1 shows an example of such de-synchronization in a
segment taken from the center of the utterance “promote
birth”. Note that during the /t/ segment, the lips, which
would normally be in a medium-open position, are com-
pletely closed due to the upcoming bilabial phoneme.

One way to capture such variability is by using context-
dependent units. However, visual coarticulation effects such
as the one described above can span three or more phonemes,
requiring a large number of models. This leads to an inef-
ficient use of the training data, and cannot anticipate new
variations. Alternatively, we can break the assumption that
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Fig. 1. Mouth images aligned with the corresponding phoneme sequence.

visemes are the basic building blocks of visual speech and
instead model articulatory events, which we believe are the
more natural visual units.

From the point of view of speech production, each sound
can be described by a unique combination of several artic-
ulator states, or articulatory features (AFs), such as: the
presence or absence of voicing, the position of the tongue
body and tongue tip, the opening between the lips, and so
on. A word consists of a number of (not necessarily syn-
chronous) sequences of articulatory targets. Conventional
speech models make the simplifying assumption that a word
can be broken up into phonemes, each of which is an atomic
unit. The articulatory approach offers a more flexible and
parsimonious architecture. For example, the visual speech
segment in Figure 1 can be explained as the de-synchroniza-
tion of the lips from the remaining articulators. Although
similar pronunciation models have been used in modeling
spontaneous acoustic speech [9], to the best of the authors’
knowledge, this is the first application of the multi-stream
articulatory feature approach in the visual domain. In the
following sections, we present a visual speech recognition
framework that models visual speech in terms of the under-
lying articulatory processes.

2. VISUAL ARTICULATORY FEATURE
DETECTION

We treat articulatory features as the hidden states underlying
the surface visual observations [12], and learn them using a
supervised learning approach. An observed feature vector
is used as the input to a statistical classifier, which outputs
the hidden articulatory feature labels. A preprocessing step
extracts the observed feature vector from the input image.
In principle, each articulatory feature classifier could use
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different observation-level measurements. For example, the
classifier for “lip rounding” could take motion vectors as
input, while the “dental” classifier could use color input.

We assume a set of training examples with images of
mouths and the corresponding articulatory feature labels;
each image has several discrete labels, one for each AF. In
preliminary experiments, we have found that support vec-
tor machines (SVMs) outperform Gaussian Mixture Models
on the task of articulatory feature classification for a single
speaker, and have therefore chosen to use SVM classifiers.

In dealing with the visual modality, we are obviously
limited to modeling the visible articulators. As a start, we
are using features associated with the lips, since they are al-
ways visible in the image: LIP-OP (closed, narrow, medium,
wide), LIP-RND (rounded, unrounded) and LAB-DEN (la-
bio-dental, not labio-dental). This ignores other articulators
that might be distinguishable from the video, such as the
tongue and teeth; we plan to incorporate these in the future.

Note that the standard formulation of SVM classifica-
tion produces a hard decision (the class label). However, in
order to not lose information by forcing a decision at this
early stage, we produce soft decisions in the form of poste-
riors P (Ft = f |Xt = x), where Xt is the observation at
time t and Ft is a particular AF. SVM outputs are converted
to posterior probabilities using the implementation of the
sigmoidal mapping described in [3]. Furthermore, since our
recognizer uses a generative model, it is more natural to use
likelihoods than posteriors, so we convert the posteriors to
(scaled) likelihoods using P (Xt = x|Ft = f) ∝ P (Ft =
f |Xt = x)/P (Ft = f).

3. A DYNAMIC BAYESIAN NETWORK FOR
FEATURE-BASED VSR

Our recognition model is based on the work described in [8,
9]. The model generates, for each word in its vocabulary,
all sequences of AF values that are possible realizations of
that word, along with the probabilities of those realizations.
While a word may have only one or two baseform (dictio-
nary) pronunciations, such as either → {/iy dh er/, /ay dh
er/}, there may be thousands of AF combinations that are
possible realizations of the word. In order to take advan-
tage of the semi-independent evolution of the AF streams—
in other words, the factorization of the AF state space—
we implement the model as a dynamic Bayesian network
(DBN). Figure 2 shows (a slightly simplified version of) one
frame of the DBN used in our experiments. Conditioned
on the identity of the word—or, in the case of words with
more than one baseform, conditioned on the word and the
baseform—the model essentially consists of three parallel
HMMs, one per AF, where the joint evolution of the HMM
states is constrained by synchrony requirements as we de-
scribe below.

Given a word, the model generates its realizations as
follows. First, a baseform is drawn from the set of allowed
baseforms for the word. This baseform pronunciation de-
fines a set of target feature value trajectories, one for each
AF F . The AFs then proceed through their trajectories, pos-
sibly at different rates (i.e. asynchronously). In Figure 2, iFt
is an index into the trajectory of feature F at time frame t;
i.e., if F is in the nth state of its trajectory at time t, then
iFt = n. UF

t is the underlying target value corresponding to
this state. We define the degree of asynchrony between two
features F1 and F2 at time t as |iF1

t − iF2
t |. This asynchrony

is not completely unconstrained: Sets of trajectories that are
more “synchronous” may be more probable than less “syn-
chronous” ones, and we impose a limit on the maximum
asynchrony between sets of features. The probabilities of
varying degrees of asynchrony are given by the distributions
of the asyncj variables. checkSyncj

t simply checks that
the degree of asynchrony between its parent features is in
fact equal to asyncj

t : It is always observed with value 1 and
its distribution is

P
(

checkSyncj
t=1|asyncj

t ,i
F1
t ,i

F2
t

)
= 1

⇐⇒ |iF1
t −i

F2
t | = asyncj

t ,

and 0 otherwise, where iF1
t and iF2

t are the indices of the
features corresponding to checkSyncj

t . 1 In the model of
Figure 2, async1

t is the degree of asynchrony between LIP-
RND and LIP-OP, and async2

t is the degree of asynchrony
between LIP-OP and LAB-DEN.

Finally, the surface value SF
t that is actually produced

by the speaker at time t for feature F may differ from the
underlying value UF

t , usually due to undershoot (e.g. in-
complete lip closure for a /b/) or context effects. For the ex-
periments in this paper, however, we focus on asynchrony
modeling and assume that SF

t = UF
t for all t, F .
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Fig. 2. One frame of a DBN for feature-based VSR. All variables are
discrete-valued. UF

t are the underlying feature values, and SF
t are the

surface values. iFt is an index into the state sequence of feature F . Edges
without parents/children in the figure connect the iFt in adjacent frames.

1A simpler structure could be used for decoding, but it would not allow
for EM training of the asynchrony probabilities (see [8]).
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In order to incorporate the likelihoods computed from
the SVM outputs, we use the Bayesian network mechanism
of soft evidence [1]. This is used when a variable is not ob-
served but we have some information that causes us to favor
some values over others; this is exactly what the SVM out-
puts tell us about the AF values. Soft evidence allows us
to combine a generative model with likelihoods computed
by any means, including discriminative classifiers such as
SVMs. This can be done by adding, for each articulatory
feature F , a “dummy” evidence variable EF

t , whose value
is always 1 and whose distribution is constructed so that
P (EF

t = 1|SF
t = f) is proportional to the likelihood P (Xt =

x|SF
t = f) computed from the SVM discriminant values.
Thus far we have used this model for isolated-word recog-

nition, which amounts to finding the word that maximizes
the probability of the observations. The parameters of the
distributions in the DBN can be learned from SVM soft ev-
idence outputs for a set of training data, for example using
the Expectation-Maximization (EM) algorithm [5]. Both
tasks can be accomplished using standard DBN inference
algorithms [10]. In the proof-of-concept experiments de-
scribed below, however, a very small data set was used and
no DBN parameter learning was done; the DBN parameters
were set manually, using linguistically plausible values.

4. EXPERIMENTS AND RESULTS

We have conducted pilot experiments to investigate several
questions. First, we would like to compare the effects of
using feature-based versus viseme-based classifiers, as well
as of using a feature-based versus viseme-based pronuncia-
tion model. A viseme-based pronunciation model is a spe-
cial case of our DBN, in which the features are constrained
to be completely synchronous (i.e. asyncj

t is identically 0)
and no feature changes are allowed (i.e. SF

t = UF
t ). Us-

ing viseme classifiers with a viseme-based pronunciation
model results in essentially the conventional viseme-based
HMM that is used in most VSR systems. In order to use a
feature-based pronunciation model with viseme classifiers,
we use a many-to-one mapping from surface features (SF

t )
to visemes. Also, since we do not have ground truth artic-
ulatory feature labels, we investigate how sensitive the sys-
tem is to the quality of the training labels in terms of both
feature classification and word recognition. In order to facil-
itate quick experimentation, these initial experiments focus
on an isolated-word recognition task using a small data set
and, as previously mentioned, manual settings for the (small
number of) DBN parameters.

4.1. Data and Visual Signal Preprocessing
For these initial experiments, we used 21 utterances taken
from a single speaker in AVTIMIT [7], a corpus of audio-
visual recordings of subjects reading phonetically balanced
sentences with a vocabulary of 1793 words. Of these, 10 ut-
terances were used for training and 11 for testing. To simu-

SVM type LIP-OP LIP-RND LAB-DEN viseme

Forced train(%) 44 (84) 63 (84) 50 (99) 33 (71)
Manual train(%) 59 (83) 78 (87) 87 (99) N/A

Table 1. Classifier accuracies for the feature and viseme SVMs, aver-
aged over the N classes for each SVM: acc = 1

N

∑N
i=1 acc(class i).

Chance performance is 1
N

. The numbers of classes are: 4 for LIP-OP, 2
for LIP-RND and LAB-DEN, and 6 for the viseme SVM (consisting of those
combinations of feature values that occur in the forced transcriptions).

late the isolated-word task, utterances were split into words,
resulting in a 70-word test set. Each visual frame was also
manually transcribed with the three AFs.

The raw video stream was preprocessed by first extract-
ing 37x54 pixel mouth regions from the image sequence
and converting them to grayscale (see Figure 1). Then, a
DCT transform was applied to each image to obtain a set of
1998 coefficients, of which the 900 highest-frequency coef-
ficients were retained. The dimensionality was further re-
duced via PCA, with the top 100 PCA coefficients used as
the final observation vector.

4.2. Classification

A radial basis function (RBF) kernel SVM classifier was
trained for each of the three AFs using LIBSVM [3]. To
find optimal values of the SVM parameters, cross-validation
was performed on the training set. In order to study the ef-
fects of training label accuracy, we considered two cases. In
one case, phoneme labels from an acoustic forced transcrip-
tion were converted to AF training labels using a determin-
istic mapping. In the other case, manual articulatory feature
transcriptions were used. The first three columns of Table 1
show the resulting classification rates for each feature. Av-
erage per-class accuracies are reported to account for the
uneven distribution of classes in the data, with the total per-
centage of correctly classified frames shown in parentheses.
As we can see, manual labels result in higher per-class ac-
curacy. The last column shows the performance of a viseme
SVM trained from forced transcriptions.

4.3. Word ranking experiments
Because of the extreme difficulty of this task—lipreading
isolated words excised from continuous speech with a rel-
atively large vocabulary—we cannot expect to obtain rea-
sonable word recognition error rates. Instead, we perform a
word ranking experiment: For each spoken word in the test
set, we compute the probability of each word in the vocabu-
lary and rank the words based on their relative probabilities.
Our goal is to obtain as high a rank as possible for the cor-
rect word. Performance is evaluated using both the mean
rank of the correct word over the test set and the entire dis-
tribution of the correct word ranks.

We used the Graphical Models Toolkit [2] for all DBN
computations. In the models with asynchrony, LIP-RND
and LIP-OP were allowed to desynchronize by up to one
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Mean rank, Mean rank,
Classifier unit sync model async model

Viseme 281.6 262.7 (.1)
Feature, forced train 216.9 (.03) 209.6 (.02)
Feature, manual train 165.4 (.0005) 149.4 (.0001)

Feature, oracle 113.0 (2 × 10−5) 109.7 (3 × 10−5)

Table 2. Mean rank of the correct word in several conditions.

index value (one phoneme-sized unit), as were LIP-OP and
LAB-DEN. Table 2 summarizes the mean rank of the cor-
rect word in a number of experimental conditions, and Fig-
ure 3 shows the entire empirical cumulative distribution func-
tions (CDFs) of the correct word ranks in several of these
conditions. In the CDF plots, the closer the distribution is to
the top left corner, the better the performance. We consider
the baseline system to be the viseme-based HMM, i.e. the
synchronous pronunciation model using the viseme SVM.

In these experiments, the asynchronous pronunciation
model always outperforms the synchronous one, regardless
of the type of classifiers used. This may seem counterin-
tuitive when viseme classifiers are used; however, certain
apparently visemic changes may be caused by feature asyn-
chrony; e.g. a /k/ followed by an /uw/ may look like an /ao/
because of LIP-OP/LIP-RND asynchrony. Next, the forced
train vs. manual train comparison suggests that we could ex-
pect a sizable improvement in performance if we had more
accurate training labels. While it may not be feasible to
manually transcribe a large training set, we may be able to
improve the accuracy of the training labels using an itera-
tive training procedure, in which we alternate training the
model and using it to re-transcribe the training set. To show
how well the system could be expected to perform if we had
ideal classifiers, we replaced the SVM soft evidence with
likelihoods derived from our manual transcriptions. In this
“oracle” test, we assigned a very high likelihood (≈0.95) to
feature values matching the transcriptions and the remain-
ing likelihood to the incorrect feature values. Table 2 also
gives the significance (p-value) of the mean rank differences
between each model and the baseline (according to a one-
tailed paired t-test [13]). The differences between each syn-
chronous model and the corresponding asynchronous model
are not significant (p ≥ .1 on this test set), but all feature-
based models are significantly better than the baseline.

5. SUMMARY AND FUTURE WORK

We have shown, for a limited VSR scenario, that a recog-
nizer that models the articulatory asynchrony inherent in the
human speech production system can outperform one that
does not. We plan to continue testing this model on more
data and in comparison with more realistic viseme-based
baselines. We are also interested in applying this model to
the problem of audio-visual fusion. Most state-of-the-art
audio-visual speech recognizers model the asynchrony be-
tween the audio and visual streams [6]. However, the fusion
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Fig. 3. CDF of the correct word’s rank, using the visemic baseline and
the proposed feature-based model. The rank r ranges from 1 (highest) to
the vocabulary size (1793).

is done at the level of the phoneme/viseme. We believe that
the feature is a more natural level for audio-visual fusion.
This has been previously suggested [11], but to our knowl-
edge has not been attempted. The structure we have used
can be naturally extended to perform this type of fusion; all
that is required is a complementary set of classifiers for the
acoustically-salient features, such as voicing and nasality,
and the corresponding additional variables in the DBN.
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