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ABSTRACT

A novel system for face detection in images and video se-
quences is presented. The system incorporates a two-stage linear
discriminant and nonlinear support vector machine classifier cou-
pled with a front-end biologically-inspired search scheme. Results
based on the CMU test set demonstrate that by using such a clas-
sifier arrangement with a non-exhaustive searching scheme, a sig-
nificant reduction in computational complexity is achieved while
maintaining comparable accuracy to other leading face detection
systems.

1. INTRODUCTION

Support vector machine (SVM) classification has recently been
demonstrated as a valuable tool for face recognition and detection
in computer vision. SVMs are capable of systematically learning
the complex non-linear decision boundaries from a given sparse
training set, and have been successfully applied in many face process-
ing tasks such as face recognition, pose discrimination, and face
detection.

Such encouraging empirical results obtained from these exper-
iments can be, in part, attributed to the SVMs ability to learn a de-
cision function under conditions where estimating the parameters
of a probability density model for objects in high-dimensional im-
age space would be otherwise difficult. Furthermore, SVMs per-
form structural risk minimization on sparse training data in order
to maximize generalization to novel test examples, which, theoreti-
cally is superior to other non-parametric learning algorithms based
on empirical risk minimization (such as bayes classifier, ANN’s)
[1].

1.1. Related Work

Over the past decade, a wide range of face detection systems have
emerged from well founded algorithms including template match-
ing and active shape models as well as statistical learning methods
such as PCA based classification [2], and neural networks [3]. In
recent years, image-based methods involving statistical learning
approaches such as SVMs and ANNs have proven their effective-
ness from the reported high percentage detection rates (most over
90%) and have absorbed much of the attention in face detection
research. Rowley et al. [3] created a neural network based face
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detector which has become an apparent benchmark for other face
detection systems. A number of SVM-based face detection sys-
tems have also been proposed. Osuna et al. [4] created a single
SVM classifier trained on 19x19 face and non-face patches ob-
tained from bootstrapping. A SVM ensemble-based classifier for
face detection was used in in [5].

Many of these proposed techniques exhaustively search the
image space in a brute-force manner by sliding a search window
through the image at multiple scales. Most techniques that have
emerged to speed up searching by focusing attention to “active”
image regions use system available cues such as color and motion
(when available) to direct attention. The more challenging prob-
lem of selective attention in grayscale images is considered here.

This paper overviews a method for improved frontal-view face
detection over a single SVM system. A two-stage face detector is
described which speeds up classification by using a simple, fast
linear classifier for the majority of “easy” patterns, and invokes
a more complex but accurate nonlinear classifier when required.
Rather than using a sliding window approach, the classifier invokes
a front-end selective attention server which predicts regions in an
image attracting visual attention. Using this approach, a much
faster classifier needs to examine only a small subset of the total
number of possible image windows.

Section 3 gives an overview of the method and experimental
results are shown in Section 4.

2. BACKGROUND

2.1. Support Vector Machines

Given a data set S = {(xi, yi)}
m

i=1
of m examples xi ∈ R

d

where d denotes the dimensionality of the data points with labels
yi ∈ {−1, 1}, and a kernel function K(x,x′), the SVM is formed
by solving the convex quadratic programming problem:

max w(α) =
m�

i=1

αi −
1

2

m�

i=1

m�

j=1

αiαjyiyjK(xi,xj)

subject to
m�

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, ..., m
(1)

Where C controls the weight of the classification errors (C = ∞
in the separable case). The points xi which correspond to non-
zero αi are the support vectors which represent the significant test
points making up the decision boundary. The classification func-
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tion is given by:

f(x) = sgn

�
m�

i=1

yiαiK(x,xi) + b

�
(2)

and the bias term

b = −
1

2

m�
i=1

αiyi [K (xi,xr) + K(xi,xs)] (3)

is computed using any support vectors xr and xs.

2.2. Fisher Linear Discriminant Classifier

The classic fisher’s linear discriminant function of the form f(x) =
w

T
x+ b is defined for the data {xi, yi}

m

i=1
such that the between

class scatter matrix

SB = (µ1 − µ2)(µ1 − µ2)
T (4)

of the projected data is maximized and the within class scatter ma-
trix

SW =
�
x∈C1

(x− µ1)(x − µ1)
T +

�
x∈C2

(x− µ2)(x− µ2)
T

(5)
is minimized, where µi is the mean vector of class Ci. The solu-
tion to the problem of maximizing the criterion function

J(w) =
w

T SBw

w
T SW w

(6)

can be obtained using matrix inversion w = S−1

W (µ1 − µ2)[6].

3. IMPLEMENTATION

3.1. 3.1 Two Stage Classifier

The nonlinear SVM classification algorithm is limited by the com-
putational burden incurred while calculating the decision function,
making real-time SVM based vision systems hard to achieve.

A two-stage combined FLD/SVM classifier model is presented
here which improves overall performance over a single SVM-based
detection system in terms of combined speed and accuracy. Under
most circumstances, the FLD classifier is computationally more
efficient but less accurate than the nonlinear SVM classifier. The
advantages of this speed-accuracy tradeoff are combined in the fol-
lowing manner. Given an unknown input x, the FLD classifier pro-
duces a value for the decision function f(x) ≶ 0. A more strict
set of thresholds Ta and Tb are defined so that if classification of
the unknown pattern x falls into the region f(x) ∈ [−Ta, Tb], the
pattern is labelled ambiguous and is then passed into the second
stage SVM classifier. The values of Ta, Tb are application depen-
dent and reflect the speed/accuracy tradeoff of the system. The
classifier rule is therefore:

f(x) =

��
�

sgn
�
w

T
x + b

�
if w

T
x + b /∈ [−Ta, Tb]

sgn

� �
i∈SV

yiαiK(x,xi) + b

�
otherwise

(7)

This process consists of an initial quick detection phase by the
FLD classifier followed by a more precise SVM phase. Using the
FLD, the linear classifier always has a fixed number of computa-
tions O(d) (where d is the dimension of the training space) making
it fast and ideal for classification of unambiguous patterns.

With this arrangement, the initial FLD classifier performs as
a linear pre-filter for the SVM stage. Therefore, training the non-
linear SVM classifier is simplified since it is only trained on the
examples in the ambiguous region as well as some additional boot-
strapped images, which simplifies the learning stage and produces
a smaller set of support vectors. This in turn speeds up training,
since the complexity of non-linear SVM classification is a direct
function of the number of support vectors.

3.2. Training

The training data set used in these experiments was built from
the MIT-CBCL frontal face database [7] consisting of over 400
male and female subjects cropped and centered in the image while
posing under varying lighting conditions and facial expressions.
Figure 1 shows a few sample images from the dataset. To im-
prove generalization of the classifier for handling minor variations
in frontal and upright pose, each face was transformed via small
reflections, scaling, rotations and translations, expanding the final
training set to 4858 19x19 grayscale face images.

Each training image was first convolved with a quasi-elliptical
binary mask removing some of the pixels lying close to the bound-
ary of the window pattern which introduce noise into the training
process. Histogram equalization was then applied to each image
compensating for variations in illumination brightness. These pre-
processing steps are similar to those used in [3]. Finally, the face
image space was reduced from 339 to 30 dimensions via PCA.

Fig. 1. Sample images from the MIT-CBCL training data set

An RBF kernel function was used for SVM learning. The
value for parameters C and γ were found by using a coarse grid
search in the (C,γ) space to find

max
C,γ

CVA (8)

where CVA is the cross-validation accuracy defined as the percent-
age of data correctly classified (true positives and true negatives)
using 3-fold cross-validation. The training set is randomly split
into 3 subsets of equal size. Successively, one subset is tested us-
ing the classifier trained on the other 2 subsets giving a total of�
3

1

�
training instances. Each part of the whole training set is pre-

dicted once by the classifier and the results are aggregated. The
number of retained eigenvalues k can also be chosen using eq. (8)
by adding k to the list of optimization parameters.

To further improve generalization of the non-face class, non-
face samples were collected though a bootstrapping procedure sim-
ilar to [8], and [4]. A set of random image patches from a natural
scene were used to generate the non-face samples. 10000 non-face
samples were first applied to the linear classifier. The resulting
false positives and ambiguous patterns were appended to the intial
training set and then passed to the second stage SVM classifier.
Any false positives collected from the second stage were appended
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to the SVM training set. The classifiers were then retrained using
their newly appended non-face images. This procedure was iter-
ated a total of three times.

From the final initial training set, 342 faces and 547 non-faces
fell into the ambiguous region of the linear classifier and were used
to train the non-linear SVM giving a total of 269 support vectors.
Note that when the SVM classifier was trained and used indepen-
dently on the training data, between 800 − 2500 support vectors
were present depending on system parameters.

3.3. Image Search Approach

Instead of using a global multiscale sliding window technique to
search for face candidate regions, a system developed by Itti et
al. [9] is used to predict potential face regions in a serial fashion.
The system linearly combines a set of adjustable weighted chan-
nels (color, intensity, orientation, motion) and performs a center-
surround operation between several pairs of scales in order to con-
struct a master saliency map of the image. A winner-take-all neural
network then uses the map to serially select output targets for the
image. Figure 2 shows the overall architecture.

Input image Linear Filtering
Center-surround
differences and
normalization

Master
Saliency Map

color, intensity, orientation

Winner-take-all

Output targets

Fig. 2. Selective attention model architecture (based on [9])

Note that saliency in an image is the degree of conspicuous-
ness (or a measure of visual attractiveness) that a feature exhibits
in the presence of its surroundings. This notion is used to make
the assumption here that face objects are generally distinguishable
from their surrounding background. Furthermore, since this model
uses simple cues in the visual cortex such as intensity, color and
orientation, it does not make any inference about high level object
targets that it is focusing on. To this extent, it applies as a general
predictor of regions of visual attention. In the experiments pre-
sented here, grayscale images were used. Therefore, the color and
motion channels were given a weighting of zero.

The CMU test set [3] was used to measure the selective at-
tention model’s ability to identify correct face regions in images.
Table 1 shows results for the test set A-C containing 130 images
with 507 total unoccluded faces. The top two rows use 10 attention
shifts per image while the bottom two rows use 30. The best results
are obtained from images containing less than 5 faces per image.
From only the first 10 targets, nearly 78% of the targets land on the
faces in the images (within 25 pixels horizontally and vertically),
with an average computation time of 2425ms for the tenth target.
Using 30 targets, approximately 84% of the targets landed on all
faces in the images with an average computation time of 3132ms
for the 30th target.

Two example images taken from the CMU face test set and
processed by the selective attention model are shown in figure 3.
Only the first few target coordinates are shown. The resulting tar-
gets are overlaid on the images as large circles, with arrows indi-
cating sequence of targets acquired. Note that in the right image
the set of face targets is not exhaustive and does not pick out all
faces in the image in the first 7 targets. In contrast to the right im-
age, clearly as more faces are present in an image, the less salient
each individual face becomes since they are competing for visual
attention.

on face within 25 pixels
faces
found

total
faces

% faces
found

total
faces

%

images with
1 − 4 faces

83 127 65.3 99 127 77.9

all images 148 507 29.2 192 507 37.8

images with
1 − 4 faces

91 127 71.6 107 127 84.2

all images 157 507 30.9 204 507 40.2

Table 1. Selective attention results for CMU test set [3] using 10
and 30 attention shifts per image.

Fig. 3. sample images from CMU test set after being processed by
the front-end selective attention system.

The face detection system is organized in a client-server frame-
work over TCP/IP using wireless 802.11b in which the client (two-
stage classifier) requests potential target locations from the selec-
tive attention server after transmitting the image. The client re-
sponds with a set of points (x, y) indicting spots of potential face
regions for the classifier to inspect. Since the classifier can work
independently of the selective attention model once it has been
given at least one target point, the model can operate in a parallel
fashion.

A limited range sliding window (25 pixels horizontal and ver-
tical) at multiple scales is then applied to each received target
point. A pyramid of images is created by repeatedly subsampling
the window creating 10 levels from 19x19 up to 190x190 in size.
A similar technique was done in [3] for example. As described,
usually true faces will give correct classification in 2 or 3 con-
secutive scales and locations. This notion is used to help drasti-
cally reduce false positives occurring in the image and confirm cor-
rect face regions. A 3x3x3 neighborhood filter is used to remove
isolated detections by only retaining detections with multiple hits
within a 3x3 region and within 3 scales in the image pyramid. A
visual overview of the face detection system is shown in figure 4.

4. EXPERIMENTAL RESULTS

The CMU test set [3] was used to evaluate the performance of this
system. For each image, the selective attention server found 30
targets. For each target, the two-stage classifier in eq. (7) examined
187, 500 19x19 windows using 10 scales and a region of 25x25
pixels around each target.

A detection rate between 74.2% and 88.7% was achieved based
on a small number of false detections (< 10−4) depending on sys-
tem parameters. On average, using Ta = Tb = 0.00035 (see
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Fig. 4. System overview of face detection system.

eq. (7), k=30, C = 2000,γ = 0.35, the SVM classifier was in-
voked ∼ 58% of the time. Figure 5 shows an ROC curve based
on these parameters. The results show how overall accuracy of
the two-stage classifier compares to a single SVM based classifier
while providing a reduced complexity advantage.

While the detection results are comparable to other published
face detection systems such as [3], the added gain lies in the re-
duced complexity in searching and classification. Table 2 shows
that whereas Rowley et al.’s [3] system examined 83, 099, 211
20x20 pixel windows for the CMU test set, only 24, 375, 000 19x19
windows are examined in this system.

An extension to video sequences is currently being examined
by integrating a motion channel into the selective attention process
to further improve the searching strategy.

# Windows Ex-
amined

Detection Rate
(< 10−4 FP%)

Proposed system 24, 375, 000 74.2 − 88.7%
Rowley et al. [3] 83, 099, 211 77.9 − 90.3%

Table 2. Performance of face detection system based on CMU test
set.
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Fig. 5. ROC curve comparing two-stage and SVM classifers based
on CMU test set A,B and C.

5. CONCLUSION

A combined two-stage classifier coupled with a front-end selec-
tive attention system has been shown to reduce the computational
complexity of face detection in images. And, by using the selective
attention module to select quality targets, a non-exhaustive search
of the image can be performed yielding overall detection results
comparable to other face detection systems.
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