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ABSTRACT

This paper considers features based on the multiplication 

of two consecutive signal values. Furthermore, three new 

classifiers using the features are proposed: fixed threshold 

tree classifier, dynamic threshold tree classifier and 

support vector machine (SVM) classifier. It is shown that 

the multiplication produces dependence of the features on 

the symbol rate. In order to quantify effects of this 

dependence the paper study the performance of the newly 

proposed classifiers as well as the maximum likelihood 

(ML) classifier [1,2], the qLLR classifier [3], and the 

cumulants based classifier [4]. Simulations show that the 

SVM classifier has promising results in the sense that it is 

closest to the theoretically optimal results obtained by the 

ML classifier.

1. INTRODUCTION 

Recognition of modulation in received signals is 

important for many applications such as signal 

interception, interference identification, electronic 

warfare, enforcement of civilian spectrum compliance, 

radar and intelligent modems. The modulation recognition 

methods can be divided into two categories. The first is 

modulation recognition with prior information available. 

The information provides knowledge of signal parameters 

such as amplitude, carrier frequency, symbol rate, pulse 

shape, initial phase, channel characteristic and noise 

power. The second, and more challenging, is modulation 

recognition without any prior information about signal 

parameters. 

       In the past years there have been different approaches 

to solve the modulation recognition problem. These 

approaches can be classified in three groups. The first are 

approaches that use memoryless nonlinearities and detect 

the spectrum lines occurring for specific modulation types 

[5]. The second are the feature based approaches, where 

the recognition is divided into two stages. The first stage 

maps the signal into a smaller feature domain. Usually the 

feature domain is independent of the signal’s parameters. 

The second stage does the classification of the signal by 

comparing the measured values of features to a priori 

collocation of the feature values for each modulation type 

[4]. The third are the decision theoretic approaches, where 

all the signal parameters are known with some exceptions 

(the classifier in [3] does not need to know the initial 

phase). These approaches use the likelihood function to 

do recognition. They are optimal in the sense of the 

minimum probability of misclassification. 

       Here we present features to classify the following 

modulations: amplitude shift keying with two levels 

(ASK2), amplitude shift keying with four levels (ASK4), 

binary phase shift keying (PSK2), quadrature phase shift 

keying (PSK4), binary frequency shift keying (FSK2) and 

four frequency shift keying (FSK4).  

       The paper is organized in the following way. Section 

2 presents the signal model. Section 3 presents the 

features used in the classification. Section 4 presents the 

classification algorithms used in simulation. Section 5 

presents the simulation results with discussion. 

2. SIGNAL MODEL AND ASSUMPTIONS 

We consider the following complex baseband signal 

( ) ( ) ( )s k x k n k                              (1) 

where ( )x k is the transmitted signal. In the case of ASK 

and PSK modulation the transmitted signal is 
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and in the case of  FSK modulation 
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where ),,( nnna  are the amplitude, phase and the 

frequency of the modulating signal.
c

is the initial phase. 

)( nTkp  is the rectangular pulse shape function defined 

as
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and T is symbol period. ( )n k is assumed to be complex 

white Gaussian noise with power  2 .

       The signal model used here is different from the one 

used by Wei and Mandel [1, Equation 1.6], where the 

model for bandpass signals is assumed. Since in [1] the 

carrier frequency is assumed known, without loss of 

generality we can work with signals in the baseband. 

       The signal constellations are assumed to have unit 

average power. This assumption stays as it was in [1]. The 

pulse shape is rectangular and the noise power is known 

to the receiver in the case of maximum likelihood, qLLR, 

cumulants, dynamic threshold algorithm and SVM 

classifier. Although, the assumption that the carrier 

frequency is an integer multiple of the symbol rate is used 

in order to include the FSK modulated signals (in the case 

of maximum likelihood classification) , this assumption is 

not needed in the case of ASK and PSK signals. In all 

other aspects the assumed scenario is the same as the one 

described by [1, page 17]. 

3. PROPOSED FEATURES 

The modulation recognition is based on two signal 

features. The first feature is 

)1()()(1 kxkxkNP                               (5) 

 where x (k) is the modulated signal. 

      Applying NP1 on ASK signal yields 
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Applying NP1 on PSK signal yields  

1

1( )

( ) ( 1) , 1 ( 1) 1
1( )

( ) ( 1 ( 1) ) ,

1, 1 ( 1) 1

, .

n c n c

n c n c

n n

j j j j

j j j j

j

e p k nT e e p k nT e nT k n T
NP k

e p k nT e e p k n T e k nT

nT k n T

e k nT

(7)

Applying NP1 on FSK signal yields 
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       From (6) and (7) it is clear that the mean of the 

imaginary part of NP1 is always 0 in the case of ASK and 

PSK2. In the case of PSK4 the imaginary part of NP1 has 

impulses at the transitions. The assumption of equally 

probable symbols makes the mean equal to 0. Moreover, 

from (8) we can see that the imaginary part of FSK signal 

is the sine function of the carrier frequencies. From this 

result we derive our first branch in the classification tree 

that distinguishes ASK and PSK signals form FSK 

signals. 

       From (6) and (7) also it is clear that the real part of 

NP1 applied to x(k) has multiple levels in the case of 

ASK2 and ASK4 and one level (if we exclude the 

transitions instants) in the case of PSK2 and PSK4. This 

phenomenon encouraged the idea of using the kurtosis of 

the real part of NP1 as a method to distinguish between 

ASK and PSK signals.  

Taking kurtosis of the real part of NP1 when applied to 

s(k) gives the following expressions: 
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where p is the ratio between the symbol rate and the 

sampling rate, and     

2 (1 .5 );ASKc p                               (10) 
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where

4 [(1 ) .6428 ]ASKc p p ;                        (12) 
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The second feature is  

)1()()(2 kxkxkNP .                       (15) 

This feature compensates the effect of using the conjugate 

in the first feature, where the information content in the 

phase, which helps in distinguishing between PSK2 and 

PSK4, is lost. Applying NP2 on (1) directly (and 

assuming x(k) is a PSK signal), we have 
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Calculating the kurtosis of the real part of (16) gives us: 
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Fig. 1. Kurtosis curves of NP1 in the case of ASK4 and PSK4 

for different values of p.

Calculating the kurtosis of the imaginary part of (16) 

gives us the same results as in (17-19), with only the 

following exception: 

2 (1 )sin(2 ).PSK cc p                             (20)

The third feature distinguishing FSK2 from FSK4 is the 

ratio of the second maximum of the Fourier transform to 

the third maximum. 

       Figure 1 shows the plot of (11) and (13) as a function 

of SNR for different values of p. From the figure it is 

clear that as p decreases the distance between the kurtosis 

curves in the case of PSK and ASK4 increases at SNR 

higher than 5dB. It can be shown that the kurtosis curve in 

the case of ASK2 behaves in a similar manner as in the 

case of ASK4. Although, the distance between (9) and 

(11) is small compared to the distance of (9) or (11) to 

(13), the two curves are separated enough to distinguish 

them from each other. It should be noted at SNR<5 dB the 

curves of kurtosis for different modulations overlap for 

different values of p.

4. CLASSIFICATION 

In the classification stage we compare the work done in 

[1], [3] and [4] to three newly proposed classification 

algorithms in the case of PSK2 and PSK4. However, we 

do compare [1] with the newly proposed classifiers for the 

other considered modulations. From the results of Section 

3 it is clear that the kurtosis is SNR dependent. Because of 

that we constructed two classification trees. The first 

determines fixed thresholds and does the classification 

according. The second algorithm determines the threshold 

based on the knowledge of the SNR. The first is called the 

fixed threshold algorithm and the second is dynamic 

threshold  algorithm. The last  proposed  algorithm  is  the  
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Fig. 2. Probability of classification error (Pe) for 1000 PSK2 

and PSK4 for different SNRs. ‘ML’ represents the maximum 

likelihood classifier, ‘Dynamic tree’ is the proposed dynamic 

threshold classifier, ‘Fixed tree’ is the proposed fixed threshold 

classifier, ‘Poly’ is the qLLR classifier, ‘Swami’ is the 

cumulants classifier and ‘SVM’ is the proposed SVM classifier. 

p=.05.

SVM classifier. SVM is an empirical modeling algorithm 

that can be applied in classification problems. The first 

objective of the Support Vector Classification (SVC) is 

the maximization of the margin between the two nearest 

data points belonging to two separate classes. The second 

objective is to constrain all data points to belong to the 

right class. It is a two-class solution which can use multi-

dimensional features. The two objectives of the SVC 

problem are then incorporated into an optimization 

problem. This is done by constructing the dual and primal 

problems of the classical Lagrangian problem by 

transferring the constraint of the second objective to 

become constraints on the Lagrange variables. The 

complete derivation of SVC is given in [6]. 

5. RESULTS AND DISCUSSION

Figure 2 and 3 represents a sample of the simulation 

results comparing the classifiers discussed in Section 4. It 

is clear the maximum likelihood classifier is the best 

classifier out of the six classifiers. However, in the 

maximum likelihood classifier all the signal parameters 

including the values of the signal constellation points are 

known to the receiver.

        In the case of qLLR classifier the simulation results 

show that for small p the qLLR classifies at low SNR. 

However as we increase the value of p qLLR fails to 

classify between the PSK2 and PSK4 modulation signals. 

It should be noted that in the simulation we used the 

cumulants and qLLR classifier for PSK2 and PSK4 

signals only.  In the general case where all the six 

modulation are present  these  two classifiers are not used. 

Fig. 3. Probability of classification error (Pe) for 1000 PSK2 

and PSK4 for different SNRs. The acronyms are same as for 

Figure 2. p= .1.

As expected the dynamic threshold classifier outperforms 

the fixed threshold classifier. This is due to the curvature 

of the kurtosis curves at SNR<10 dB. Also, the simulation 

showed that the performance of the cumulants based 

classifier “Swami” is independent of p. The classifier 

achieves 0 probability of classification error at SNR 

=10dB. Finally, the simulation results demonstrate similar 

consistent performance for both the SVM classifier and 

dynamic threshold classifier for different values of p.

However in the 0dB area the SVM outperforms the 

dynamic tree classifier. This is due to the fact that the 

curves of kurtosis overlap in that region and the SVM 

classifier is modified such that it can be used on 

nonseparable data. 
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