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ABSTRACT

In this paper we investigate the problem of integrating the

complementary audio and visual modalities for speech sep-

aration. Rather than using independence criteria suggested

in most blind source separation (BSS) systems, we use the

visual feature from a video signal as additional information

to optimize the unmixing matrix. We achieve this by using a

statistical model characterizing the nonlinear coherence be-

tween audio and visual features as a separation criterion for

both instantaneous and convolutive mixtures. We acquire

the model by applying the Bayesian framework to the fused

feature observations based on a training corporus. We point

out several key exisiting challenges to the success of the

system. Experimental results verify the proposed approach,

which outperforms the audio only separation system in a

noisy environment, and also provides a solution to the per-

mutation problem.

1. INTRODUCTION

In the past decade, BSS has attracted tremendous research

interests in the signal processing community. The success of

BSS algorithms has made solutions to many problems pos-

sible, including the cocktail party problem. For this prob-

lem, it is classically addressed within the framework of con-

volutive BSS or its more effective implementation in a trans-

form domain, such as frequency domain BSS [1]. However,

the performance of the algorithms based on BSS highly de-

pends on the acoustic condition. Many, if not most, of them

tend to degrade considerably in a noisy environment.

Interestingly, rather than using only audile organs, hu-

mans are able to infer the meaning of spoken sentences by

reading the movement of mouth and facial muscles. Indeed,

human speech is inherently bimodal: audio and visual [2],

in both production and perception. At a cocktail party, the

visual modality, such as lipreading, helps the people to sepa-

rate speech from background noise and multiple competing

speakers to some extent [3]. There have been attempts in
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exploiting the visual information for speech separation [4],

[5]. However, there are several open issues demanding re-

search effort, such as addressing the convolutive mixtures

and noisy mixtures. This paper, therefore, takes into ac-

count the intrinsic coherence between audition and vision

in speech separation. The details of the approach combin-

ing audio and visual modalities will be presented in Section

2. Experimental results are given in Section 3 and the paper

is concluded in Section 4.

2. THE APPROACH

2.1. Problem Formulation and System Structure

Let’s consider an acoustic application. A set of mixtures

x(n) R
M , observed atM microphones with each picking

up a weighted components of N source speeches s(n)
R

N , can be modelled as

x(n) =H s(n) + e(n), (1)

where e(n) R
Mdenotes the possible additive noise, rep-

resents the mixing operation (multiplication or convolution)

and n is discrete time index, being omitted hereafter for no-
tation simplicity if not specified. An initial assumption of

BSS is having the sources independent so that we can apply

a separation matrixW R
N×M to conduct the unmixing

operation
y(n) =W x(n), (2)

where y(n) are the separated signals, assuming to be the
estimates of sources, i.e. y = ŝ.
In this study, we present a new separation system which

imitates the humans in speech perception by exploiting the

coherence between audio and visual modalities. Fig. 1

shows its functional block diagram. In this system, the au-

dio and visual modalities are integrated at the feature level

(or early stage) in which both stimuli are synchronized and

merged, by concatenating or averaging the vocal tract func-

tions, for joint learning and separation. We elaborate on the

functionality of Fig. 1 in the later sections.

2.2. Audio-visual Coherence for Separation

To begin with, let us consider the separation problem of in-

stantaneous mixtures. Suppose we have obtained, by ap-

plying unmixing operationW, a separated signal yi, which
is equivalent to si, with the only difference in amplitude
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Fig. 1. Audio-visual speech separation system

for the case of having no permutation ambiguity. Ideally,

yi = si. For this case, yi will have the same coherence
as si with the associated visual sequence vi, i.e. the max-
imum coherence between the audio and visual modalities.

Therefore, maximizing the coherence C between yi and vi
provides a criterion for separating the mixtures,

J (W) = argmax
W

XN

i=1
C(yi, vi). (3)

One crucial problem remaining to answer is to find out a

suitable statistical model characterizing such coherence. From

the speech production point of view, sounds are produced

from the invisible vibration of the vocal cords and soft palate

alongwith visible moments of lips, teeth and tongues. There-

fore, we can consider the spectral information for the audio

modality and mouth feature for visual modality. To rep-

resent their correlation, we use the feature extraction and

statistical modeling techniques as elaborated hereafter.

2.3. Feature Extraction and Fusion

To extract the audio feature, we resort to the spectral infor-

mation by applying the well-established filter bank analysis

approach to short time-windowed segments of audio speech,

using mel-scaled filters. Mel-frequency cepstral coefficients

(MFCCs) aMFCC are thereby computed by taking discrete

cosine transform (DCT) of the log of the mel-scale filter-

bank magnitudes. This approach is suggested due its ability

of mimicing human ear’s non-linear frequency resolution

and its robustness in the presence of source degradation.

Applying PCA to aMFCC , we obtain as = [as1, . . . , asq]
T

R
q, where subscript s denotes the source.
There are a variety of techniques for extracting visual

features from a video signal. In this study, we use the ac-

tive appearance model (AAM) proposed in [7]. The di-

mension of the acquired feature is further reduced with the

PCA to generate the final visual feature, denoted as vs =
[vs1, . . . , vsp]

T
R

p. Note that, as should be calculated

synchronously with vs in implementation. With these time-

synchronous and dimension-reduced feature vectors as and

vs on hand, we can generate a joint audio-visual observa-

tion by concatenation, i.e. us = [v
T

s a
T
s ]

T
R

p+q. This

implies that the feature fusion is conducted by mapping on

the feature level between the parameters.

2.4. Statistical Modeling and Training

Both the widely used hiddenMarkovmodel (HMM) and the

Gaussian mixture model (GMM) can be applied to model

the probability distribution of us. The probability density

of us is modeled by Gaussian mixture density, given by

p(us) =
KX
i=1

i

exp{ 1

2
(us µi)

T 1
i (us µi)}p

(2π)K | i|
, (4)

where µi, i, i and K are the mean vector, covariance

matrix, weights and the number of Gaussian kernels respec-

tively. Therefore, the parameter space for GMM is denoted

as GMM = (µi, i, σi), i = 1, . . . ,K. The expectation-
maximization (EM) algorithm [8] is used to obtain maxi-

mum likelihood estimates of . This optimal is used for

computing the joint audio-visual probability of a training

video, and will also be used in the separation algorithm.

Based on the above analysis, the training process we

used for acquiring the joint probability is conducted as fol-

lowing steps:

Step 1: Extract the visual feature vs from video sequence

by applying the AAM approach followed by PCA;

Step 2: Extract the audio feature as from audio sequence,

i.e. MFCC followed by PCA, and form the audio-visual

feature us= [v
T

s a
T
s ]

T ;

Step 3: Train the HMM/GMM model based on a training

corporus of us by using EM algorithm to optimize ;

Step 4: Calculate the joint probability p(us) using (4).

2.5. Audio-Visual Source Separation

After obtaining the joint statistical model as described above,

C(yi, vi) in (3) takes the following expression,

J (W) = argmax
W

XN

i=1
p(uyi

), (5)

whereuyi
= [v

T

si
aTyi ]

T denotes the concatenated audio-visual

feature of the i-th separated speech signal. Note that, visual
feature vTs extracted from the source video from the train-

ing process is used to compose the new joint audio-visual

observation. According to the analysis in section (2.2), it is

clear that maximization of (5) leads to the optimal separa-

tion matrixWopt. Recalling the training process, we sum-

marize our audio-visual speech source separation algorithm

for instantaneous mixtures in the following steps:

Step 1: Estimate source signals y = Wx from aW and

calculate the audio feature ay = [ay1, . . . , ayq]
T from y;

Step 2: Concatenate ay with vs to form a new joint audio-

visual feature uy= [v
T

s a
T
y ]

T ;

Step 3: Calculate the joint probability p(uy) using the GMM
model, whose parameters = (µi, i, σi) are obtained
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from the training process; if J (W) in (5) is a maxima then
stop, otherwise go back to step 1 and repeat until it is maxi-

mized.

To see how the algorithm works, let us examine a two-

input-two-output system. Substituting (1) into (2) in entry-

form, we have yi =
P2

j=1(wi1h1j + wi2h2j)sj , i = 1, 2.
After separation, yi should ideally correspond to sj for i =
j, with wi1h1j + wi2h2j = 0 for i 6= j. This leads to
wi2/wi1 = h1j/h2j for i 6= j, and wi2 can be derived by

fixing wi1. In implementation, the maximization of p(uyi
)

in (5) gives the optimal wi2 after certain trials. In a strict

sense, it is not a "blind" algorithm and does not assume the

independence of sources. A potential way of exploiting both

independence and coherence is to apply a penalty function

based framework [6], detailed for the following convolutive

case.

2.6. Audio-visual Constraint on Convolutive Mixtures

In a realistic environment, the output of the j-th micro-
phone is modeled as a weighted sum of convolutions of

the source signals, i.e., xj(n) =
PN

i=1

PP 1

p=0 hjipsi(n
p)+ej(n),where hjip is the P -point impulse response from
source i to microphone j. In this model, a large number of
coefficients have to be estimated in the time domain. More-

over, there is no direct procedure available for introducing

p(uyi
) to implement the algorithm described in section 2.5,

due to the time delays being involved in the unmixing fil-

ters. For this case, we use a computationally efficient im-

plementation in the frequency domain. Specifically, we use

the following criterion,

J (W(ω)) = argmin
W

XT

ω=1

XL

l=1
F(W)(ω, l) (6)

where F(W) = kRY (ω, l) diag[RY (ω, l)]k
2

F
, diag(·)

is an operator which zeros the off-diagonal elements of a

matrix, and ||·||2F is the squared Frobenius norm, L is the
number of time-blocks, RY (ω, l) is the cross-power spec-
trum matrices of separated signals y. We address the joint

audio-visual model as a constraint, which allows to consider

a trade-off between the independence and coherence, and

employ a penalty function framework to incoporate the con-

straint [6], that is U(W) =
¯̄
¯1/PN

i=1 p(uyi)
¯̄
¯
2

. For the sake

of computational simplicity, this penalty function is calcu-

lated in the time domain from the posterior y. The main

steps of the algorithm are summarized:

Step 1: Compute aW(ω) from the frequency domain BSS
algorithm [6], and compute the time domainW by applying

IFFT and estimate y;

Step 2: Estimate p(uyi
) by following the same procedure as

in section 2.5;

Step 3: Adjust the gradient J (W(ω)) with the penalty

1/(
PN

i=1 p(uyi
))4, go back to step 1 and repeat untilJ (W)

is minimized.

3. EXPERIMENTAL RESULTS
The statistical model p(us)was trained based on two audio-
visual sequences, uttered by two subjects. One of the sub-

jects was recorded reciting part of a children’s fairy-tale,

while the other subject was recorded separately uttering a

series of single words. Video data was obtained using a

standard Digital Video (DV) camera at 25 fps, while audio

was sampled at 32KHz, 16bit mono. The sequences were

captured in an office environment with a low level of acous-

tic noise and front-on artificial lighting. Then, the mouth

regions in the video were tracked using an AAM [7]. This

provided a set of robust visual features, which encode both

shape and texture information in a compact form.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-70

-65

-60

-55

-50

-45

Separation coefficient

In
d
iv

id
u
a

l 
p
(u

y
)

Fig. 2. The probability distribution of the separated signal

y1, i.e. logp(uy1), changes with separation coefficients us-
ing only one frame.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1400

-1300

-1200

-1100

-1000

-900

-800

-700

-600

-500

Separation coefficient

p
(u

y
)

10 frames 

15 frames 

20 frames 

Fig. 3. The probability distribution of the separated signal

y1, i.e. logp(uy1), varies with different separation coeffi-
cients using multiple audio-visual frames. (Note that, from

blue line to red line, there are 2 frames shifts between them.)

Both speech signals were processed using Mel-Cepstral

analysis with 20msHamming windows, yielding 12MFCCs

per frame. Cepstral Mean Normalisation (CMN) was then

performed on each set of coefficients to reduce any ambient

background noise effects. A PCA model was constructed

for each speaker using their respective MFCCs, which were

projected through the models to obtain as with 12 dimen-
sions (100% of the total energy). Finally, in order to retain
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SNR(dB) -6 0 6 12 clean

I AV 6.2 7.5 9.5 12.6 14.1

I A 1.3 4.1 7.3 10.1 12.2

C AV 4.5 5.2 8.3 10.2 11.2

C A 2.4 4.7 7.8 9.9 11.1

Table 1. SIR comparison between audio-visual (AV) and

audio (A) only source separation for both instantaneous (I)

and convolutive (C) mixtures.

one-to-one correspondences between the audio (20ms) and

video (40ms) signals, linear interpolation was then applied

to the visual appearance parameters to obtain vs with 10

dimensions (82.2% of the total energy). Therefore, the di-

mension of the audio-visual space was 22 (10 video + 12
audio). These dimensions remain unchanged in the separa-

tion process. Both the training and testing data set contained

1411 audio-visual feature vectors. The number of Gaussian
kernels modeling the training data set was 10.
For simplicity, only 2×2 systems were considered. The

instantaneous mixtures were obtained by mixing two audio

signals extracted from the training process with matrix [3,

0.8; 2, 4]. The separation algorithm described in section

2.5 was applied. Fig. 2 shows the joint audio-visual prob-

ability of y1 (9 individual frames), which gives the optimal
solution of w12 around 0.2 (assuming w11 = 1). How-
ever, the optimal probability was not accurate for some in-

dividual audio-visual frames. Hence, multiple frames were

examined in Fig. 3, which clearly show much more robust

solution to w12. To simulate noisy acoustic environment,
we added white noise to the mixed signals at different sig-

nal to noise ratio (SNR), see the result in Table 1. The GMM

model was used for the experiments. For robust estimation,

20 audio-visual frames were used in this experiment. The
signal to interference ratio (SIR) was used for performance

evaluation, 10 log(|Mii|
2
D
|si|

2
E
/
P

i6=j |Mij|
2
D
|sj|

2
E
), in

which si and sj are the i-th and j-th source signals, Mii

and Mij are respectively the direct and cross channels of a

multi-path channelM.

For convolutive mixtures, we use the following SIR for

performance evaluation [6],

SIRi(ω) = 10 log
|Mii(ω)|

2
D
|si(ω)|

2
E

P
i6=j |Mij(ω)|

2
D
|sj(ω)|

2
E , (7)

where SIRi(ω) represents the SIR improvement at the i-th
channel, and s(ω) are source signals in the frequency do-

main. The overall SIR(ω) is (1/N)
PN

i=1 SIRi(ω). The
algorithm in section 2.6 was applied to an artificially con-

volutive system with 9 taps. Fig. 4 shows the result of the

audio-visual constraint for the permutation problem, where

we saw considerable SIR improvement along the frequency

axis. However, this gained performance will not be con-

sidered in noisy mixtures (see Table 1), where the permu-

tation problem was addressed by using a hybrid approach
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Fig. 4. Audio-visual constraint reduced the permutation ef-

fect along frequency axis.

proposed in [9]. Therefore, the SIR difference between AV

and V for clean mixtures are not significant. However, the

SIR improvement is considerably increased for the noisy

mixtures.
4. CONCLUSION

The audio-visual source separation problems for both in-

stantaneous and convolutive mixtures have been discussed.

Experimental results indicate that using audio and visual

modalities gives more precise separation than using audio

only modality, especially for noisy mixtures. The bimodal-

ity of visual speech is also useful for addressing the fre-

quency domain permutation problem as a result of the in-

corporated correlation between audio and visual features.

However, there are several challenging problems demand-

ing further research. For example, what is the best feature

for representation of visual modality and on which level

should the modalities be combined? How to effectively

build robust model to represent the nonlinear dependency

between audio-visual modalities?
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