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ABSTRACT

This paper presents quantative analysis of swallowing sounds in 

normal and dysphagic subjects based on nonlinear dynamic 

metric tools. In addition, an automated method is proposed to 

identify patients at risk of dysphagia. Multidimensional phase 

space representation of the swallowing sound was reconstructed 

using Takens method of delays. Rosenstein and False Nearest 

Neighbor (FNN) methods were employed to evaluate the 

optimum time delay and proper embedding dimension, 

respectively. Grassberger-Procaccia algorithm was utilized to 

calculate the correlation dimension as a measure of the 

complexity of reconstructed attractor. The analysis demonstrated 

the low-dimensional dynamic characteristics of normal and 

dysphagic swallowing sounds. The optimum time delay and 

correlation dimension of opening and transmission phases of 

swallowing sounds were used as features for 3-nearest neighbor 

classifier to identify individuals at risk of dysphagia. The method 

was applied to tracheal sound recordings of 15 healthy subjects 

and 11 patients with some degrees of dysphagia. The algorithm 

was able to classify 83% of swallows correctly. Finally, a 

screening algorithm was used which correctly classified 24 

subjects of 26 subjects. This study suggests the nonlinear 

analysis as a promising tool for quantative analysis of 

swallowing sounds and swallowing disorders. 

1. INTRODUCTION 

Swallowing disorder (dysphagia) occurs in individuals with 

different congenital abnormalities, structural damage, and/or 

medical conditions [1]. A  controlled  and  coordinated  swallow  

does  not consistently  occur  in  individuals  with severe 

neurological impairments [2]. Dysphagic patients are at risk of 

choking, malnutrition, dehydration and breathing difficulty [1].  

Currently, the gold standard technique in dysphagia 

assessment is videofluoroscopy (VFS) test in which the patients 

are fed barium-mixed boluses and their bolus movement pattern 

is monitored on the screen. VFS allows examination of 

swallowing mechanism and detection of aspiration (entering the 

bolus into airway instead of esophagus) when it occurs.  

However, VFS is based on X-ray and since the maximum 

amount of patients’ exposure to X-ray must be limited, it can be 

run only for a short period of time. On the other hand, even in 

dysphagic patients aspiration may occur only 10% of the time of 

a feeding assessment. Therefore, it is quite possible to miss 

aspiration or other disorders during VFS assessment. Hence there 

is a need to develop non-invasive techniques to assess 

swallowing mechanism and its abnormalities.   

Cervical  auscultation  (listening  at  the  throat  with  a 

stethoscope)  is  a  common  routine  for  clinicians  as  a  non-

invasive component of clinical evaluation of swallowing. 

Cervical auscultation is applicable in a wide variety of feeding 

circumstances and reveals additional criteria for evaluation of the 

pharyngeal stage of feeding [3]. As in any observational method, 

the quality of information obtained by auscultation depends on 

the perceptual skills of the examiner [4]. 

In recent years, acoustical analysis of swallowing 

mechanism  has  received  considerable  attention [2-8]  as  a  

complement  for  cervical  auscultation. Respiratory and 

swallowing sounds are recorded by microphones and/or 

accelerometers and analyzed by digital signal processing 

techniques.

Recent developments in the theory of nonlinear dynamics 

have developed some methods for quantative analysis of 

experimental time series representing signals measured from 

nonlinear systems. Nonlinear techniques are able to describe 

more details of the process generated by nonlinear biological 

systems.  

The production of swallowing sound is a highly nonlinear 

process involving biomechanical and aerodynamic effects. The 

methods employed in this work are based on the analysis of data 

obtained from swallowing sound which is a single variable time 

series generated by swallowing mechanism. Characteristics of 

swallowing sound using nonlinear dynamic metric tools in 

normal subjects were recently studied in our lab [5]. It was 

shown that swallowing sound is well characterized by a small 

number of dimensions. In addition, the largest Lyapunov 

exponent was estimated to evaluate the presence of chaos. As the 

largest Lyapunov exponent for some cases was negative, it was 

concluded that swallowing sound is not necessarily a chaotic 

process [5].  

An acoustical method for classification of normal and 

dysphagic swallows was also proposed in [6]. Waveform 

dimension trajectories (WFD) was used to segment the 

swallowing sound into characteristics segments and discriminant 

analysis was used to identify patients at risk of dysphagia. The 

feature set included WFD, duration of swallows, average power 

and magnitude of the swallowing sounds. The result of that study 

V - 4210-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



was encouraging and therefore we aimed to continue that line of 

research applying nonlinear analysis. 

The goal of this work was to study the characteristics of 

swallowing sound using nonlinear dynamic metric tools for both 

normal and dysphagic individuals for dynamic assessment of 

swallowing mechanism. In addition, these metric tools were used 

as features for classification of normal and dysphagic swallows 

by acoustical means. 

2. METHOD 

2.1. Data 

Data were adopted from a previous study [2]. Tracheal sound 

recordings of two groups of subjects were used in this study. The 

first group consisted of 12 healthy children (3-16 years) and 

three healthy adults (ages 35, 38, and 54 years). All subjects of 

first group were in good health without any history of 

swallowing disorder, eating or nutrition problems, or lower 

respiratory tract infection. The second group consisted of 11 

young adult patients (ages 16-25 years) with swallowing 

disorder. It should be noted that all the swallows of this group 

were in the category of normal swallows as we excluded the 

swallows in which aspiration had occurred. However, since they 

belonged to a dysphagic patient, we considered them as 

marginally normal. 

During the test, participants were fed three textures: pre-

packaged pudding (semisolid texture), diluted pudding (thick 

liquid texture) and fruit juice (thin liquid) in bolus size of 5 ml 

throughout the experiment. For acoustical  monitoring,  two  

Siemens  accelerometers (EMT25C)  were  placed  (by  double-

sided  adhesive  tape rings) over  suprasternal notch to record 

tracheal breath and swallowing sounds and the left or right 

second intracostal space, in midclavicular line, to record lung 

sounds.  In this study, however, only tracheal sounds were used. 

The sound signals were amplified, bandpass filtered (30-2500 

Hz) and digitized at 10240 Hz.

2.2. Nonlinear Analysis and Feature Extraction 

The first step in the analysis of nonlinear dynamical systems is 

the reconstruction of the attractor [9-13]. It is common to make a 

reconstruction of the attractor using a single variable time series 

using the Takens method of delays [9,10]. In this study, 

swallowing sound is available time series. These data must be 

transformed into multi-dimensional phase-space plots. 

Swallowing sound is described by the one-dimensional time 

series )(ix where Ni ,...,2,1 is the time index.  

The method of delays reconstructs the attractor by using 

delay coordinates to form state-space vectors )(kX  in a multi-

dimensional phase space. The E-dimensional vectors )(kX  can 

be constructed as: 

)])1((),...,2(),(),([)( EkxkxkxkxkX , (1) 

where )(kX  is one point of the trajectory in the phase space at 

time )1(,...,2,1 ENk ,  is an appropriate time lag 

(an integer multiple of the sampling period) and E  is called the 

embedding dimension and determines the smallest number of 

independent variables that uniquely describe the character of the 

system.  

The quality of the reconstruction using method of delays 

depends on the delay parameter [10, 11]. Rosenstein et al. [11] 

proposed a geometry based method for choosing best time delay. 

This method measures the average displacement ES of the 

embedding vectors from their original locations on the line of 

identity. ES  is evaluated as a function of  such that: 
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where the superscripts denote the time delay between successive 

embedding components and M is the number of vectors for the 

corresponding dimension E . As the lag increases, the average 

displacement increases accordingly. With larger values of E ,

reconstruction expansion reaches a plateau at smaller values 

of . We choose the best time lag as the point where the slope of 

the curve decreases to less than 25% of its initial value. 

The purpose of time-delay embedding is to unfold the 

attractor in a Euclidean space large enough such that all self –

crossings of the orbit can be eliminated. The attractor will be 

unfolded if we use the minimum embedding dimension minE , or 

any minEE . In an embedding dimension that is too small to 

unfold the attractor, points that lie close to each other will not be 

neighbors because of the dynamics. Some will be far from each 

other but appear as neighbors because the geometric structure of 

the attractor has been projected onto a smaller space. On the 

other hand, working in any dimension larger than the minimum 

required by the data leads to excessive computation when we 

evaluate any metric parameters. In this study, the method 

discussed in [12] was used to find a value for the minimum 

embedding dimension which is based on increasing dimension, 

,...3,2,1E  until no false neighbors remained. 

In dimension E , each vector, )(kX , has a nearest neighbor, 

)(kX NN
. Let )(2 kR E  be the distance between the vectors 

)(kX  and )(kX NN
:

1
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In dimension 1E , the distance between the vectors )(kX  and 

)(kX NN
 will be: 

22
1

2 )]()([)()( EkxEkxkRkR NN
EE .  (4) 

If )()( 2
1

2 kRkR EE , the closeness )(kX  and 

)(kX NN
 is due to the projection from some higher dimensional 

attractor, down to dimension E . When we increase from 

dimension E to dimension 1E , we have put away these two 

points. A threshold T  is required to decide when neighbors are 

false. The neighbors that fulfill: 
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at time point k are considered false.  

Several kinds of dimensions have been proposed in order to 

give a precise description of the complexity of the system or an 

equivalent way to give lower bound for number of variables 

required to model the system under study. The correlation 

dimension is the most widely used measure in literature [10,13].  

The Correlation Dimension cD  given in [13] by Grassberger 

and Procaccia based on determining the relative number of pairs 

of points in the phase space set that is separated by a distance of 

less than r. It is computed from: 

r

rC
D rc
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,                           (6) 

where the correlation sum )(rC is:

N

i

N

j

ji XXr
N

rC
1 1

2
|)|(

1
)( ,                 (7) 

where iX , jX  are the points of the trajectory in the phase 

space, N is the number of data points in the phase space , the 

distance r is a radius around each reference point iX , and  is 

the Heavyside function which excludes values outside of radius. 

2.3. Classification 

A 3-nearest neighbor classifier and a two-layer feed-forward 

neural network were created to classify normal and dysphagic 

swallows. The optimum time delay and correlation dimension of 

the opening and transmission sounds (4 features in total) were 

used as features of these classifiers. 

 We began by removing the swallows of one subject from a 

set of labeled swallows of all subjects. 3-nearest neighbor rule 

classified each swallow of the subject whose swallows had been 

removed by assigning it the label most frequently represented 

among 3 nearest samples of other subjects’ swallows. In other 

words a decision is made by examining the labels on the 3 

nearest neighbors and taking a vote. 3-nearest neighbor classifier 

was used 26 (i.e. the number of subjects) separate times, and 

each time all swallows of one subject was removed.  

Since the number of subjects was not large enough for 

randomly dividing the recordings to training and test data sets, 

jackknife approach was utilized for training and testing of the 

neural network classifier, in which the accuracy is estimated by 

training the classifier 26 ( i.e. the number of subjects) separate 

times, and each time testing it on the left out data. The jackknife 

estimates of the classification were averaged between the 

subjects.

3. RESULTS AND DISCUSSION 

In this study, swallowing sound was decomposed into 2 major 

sections and each section was individually studied. These two 

sections were called Opening and Transmission. The Opening 

section was from the beginning of swallow to the end of Initial 

Discrete Sound (IDS) as defined in [3]. The Transmission section 

was from the sample point after IDS termination to swallow 

termination.  

A typical curve of percentage of false nearest neighbors for 

different values of embedding dimension for thin liquid texture 

and opening part of swallow of a dysphagic subject is shown in 

Fig. 1. For embedding dimension 8E , the false nearest 

neighbor percentage is less than 1%. Therefore, we may 

conclude the optimum value for the minimum embedding 

dimension, minE , based on false nearest neighbor method is 

equal to 8. 

The average displacement of the embedding vectors from 

their original locations on the line of identity as a function of 

time delay )(ES , for embedding dimensions 8E was

calculated for each texture and for each of the opening and 

transmission sections. The best time lag was chosen as the point, 

where the slope of the curve decreased to less than 25% of its 

initial value. The optimum values of  depended on subject, 

bolus textures and swallowing sound section and are shown in 

table 1. 

Using Grassberger-Procaccia algorithm, correlation 

dimension of swallowing sounds were evaluated for different 

subjects, textures and sections. Correlation dimension do not 

appear to change appreciably among the subjects. Correlation 

dimension were calculated for embedding dimension 8 and the 

corresponding optimum time delay. The results are shown in 

table 1. 

Classification of different swallows was performed as 

explained in section 2.3. The 3 nearest neighbor classifier was 

found to be superior to the feed-forward neural network. Their 

accuracy was 83% and 71%, respectively. As a second stage 

classification, a screening algorithm was used in which if more 

than 50% of the swallows of a subject were classified as being 

normal, the subject was considered as normal. Otherwise, the 

subject was considered as at risk of dysphagia. This algorithm 

classified 24 subjects of 26 subjects, correctly. 

Classification accuracy obtained in this study is comparable 

to the results of [6]. Among 24 different features used in [6], two 

features were stated to be more important than the others: 

waveform fractal dimension and time duration of the opening 

and transmission sections of swallow. In this study, we added 

time durations to our features. But classification accuracy 

became less for most subjects mainly due to the high variability 

of this feature within the swallows of a subject. However, the 

waveform fractal dimension, if added to features used in this 

study will likely increase the accuracy.  

Overall, the results of this study are very encouraging as the 

proposed method is able to classify normal and marginally 

normal swallows from each other with a high accuracy. Although 

physical interpretations of nonlinear metric tools are usually 

difficult, however based on the results of this study, they seem to 

reveal some hidden characteristics of a very complex 

mechanism, i.e. swallowing process.  This study suggests the 

nonlinear analysis as a promising tool for quantitative assessment 

of swallowing sounds and confirms discriminatory capability of 

the reconstructed phase space features for swallowing disorders. 
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Fig. 1. False nearest neighbors as a function of embedding 

dimension
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Table 1.  Optimum time delay range and Correlation dimension (mean std) for opening and transmission phases in normal and 

dysphagic subjects. 

Normal Dysphagic 

Thin Liquid Thick liquid Semisolid Thin Liquid Thick liquid Semisolid 

Opening Phase 3-9 3-9 3-9 6-9 5-8 6-8 Optimum 

Time 

Delay 
Transmission Phase 4-10 3-10 4-10 7-11 6-10 6-9 

Opening Phase 3.09 0.58 2.74 0.52 3.05 0.52 2.22 0.24 2.19 0.24 2.37 0.32Correlation

Dimension
Transmission Phase 3.20 0.51 2.90 0.54 3.13 0.47 2.30 0.18 2.21 0.26 2.25 0.35
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