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ABSTRACT 

The classification of electroencephalographic (EEG) sig-

nals is an important issue in the ongoing research of brain-

computer interface (BCI) technology. One such BCI uses 

slow cortical potential measures to infer user intent from 

the original brain activity. In the paper seven features 

based on the standard low-level signal properties are 

evaluated in their ability to classify brain activities, and 

thus make up for the scarcity of signal features for the 

current EEG signal categorization. In addition, a paradigm 

is proposed to select effective low-level features for EEG 

signal classification. Combining the features selected by 

the paradigm with the DC value of slow cortical potentials 

for categorization based on a Bayesian classifier, we 

obtained significant improvement on classification accura-

cy for data set Ia of BCI competition 2003, which is a 

typical representative of one kind of BCI data. 

1. INTRODUCTION 

Over the past decades, many laboratories have begun to 

explore brain-computer interface (BCI) technology  which 

gives its users communication and control routes that do 

not depend on the brain’s normal output channels of 

peripheral nerves and muscles [1][2][3]. In-depth BCI 

research would also contribute to the study of brain cogni-

tion behaviors. Current interest in BCI development comes 

mainly from the hope that this technology could be a 

valuable new augmentative communication option for 

those with severe motor disabilities—disabilities that 

prevent them from using conventional augmentative 

technologies, all of which require some voluntary muscle 

control [1].  

Among the variety of methods for monitoring brain 

activity, electroencephalography (EEG) provides a 

practical way for BCI study. However, in the current 

research of EEG-based BCI, the signal features presented 

up to the present are very limited. Some BCI systems use 

rhythm features reflecting oscillations in particular neuro-

nal circuits (e.g. mu or beta rhythms from sensorimotor 

cortex). Other systems use potentials evoked from parti-

cular brain regions by particular stimuli, e.g. P300 event-

related potential, or slow cortical potentials, as the BCI 

control signal [4] [5]. 

The existing BCIs often use the following information 

present in the signal to assess the state of the subject’s 

brain and thus to category different EEG signals: 

frequency-domain information as with mu- and/or beta-

rhythm amplitude, time-domain waveforms such as the 

P300, or DC potentials [6]. Although with several diffe-

rent classification methods, their error rates are often a 

little high [7]. In some cases, the classification scheme 

does not significantly influence the classification accuracy, 

suggesting that the topology of the feature space is 

relatively simple. Perhaps further advances could be made 

by developing more powerful features or at least 

understanding the feature space. This is the direct 

motivation of the research presented in our paper.  We 

explore the applicability of standard low-level features 

used in audio/speech signal processing to the problem of 

EEG signal classification.  

The main contribution of our paper would be that we 

extend the choice of features for EEG signal categoriza-

tion to a large extent, and provide a general paradigm for 

feature selection of EEG signal. Using the complemented 

features with DC potentials for categorization, we obtain-

ed much better classification results than that of only 

based on DC potentials, and even get a better result than 

the best method for BCI competition 2003—data set Ia [7].  

2. METHODS 

The biological signals (e.g. EEG signals) being used in a 

BCI are typically non-stationary. In addition, they change 

due to subject fatigue and attention, due to disease 

progression, and/or with user training [2]. Therefore, 

feature selection for EEG signals is a challenging topic, 

and categorization based on EEG signal features is also a 

hard task. Because BCI is an interdisciplinary project, 

many neuroscientists, psychologists and rehabilitation 

specialists might not be accustomed to adopt the features 
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widely used by audio/speech signal processing specialists.  

However, on the other hand, the general features used to 

describe an audio/speech signal have not been thoroughly 

evaluated in their capability for EEG signal categorization 

to this day. In this article, we concentrate on assessing the 

applicability and effectiveness of standard low-level signal 

features for EEG signal categorization, and propose a 

paradigm for EEG signal feature selection.  

2.1. Data set description 

The data set used to interpret our approach is from BCI 

competition 2003—data set Ia [7]. The purpose of BCI 

2003 competition is to stimulate improvements in the 

signal-processing component of BCIs. In the competition, 

several data sets of different types were made publicly 

available for analysis by research groups worldwide. Each 

of the data sets is very typical for BCI research.  

All data in data set Ia were taken from a single healthy 

subject at the university of Tuebingen, Germany. The 

subject was asked to move a cursor up (class “0”) and 

down (class “1”) on a computer screen. Trials consisted of 

three phases: a 1-s rest phase, a 1.5-s cue-presentation 

phase, and a 3.5-s feedback phase. Six EEG recording 

electrodes were all referenced to the vertex electrode 

zC (International 10-20 system) as follows: channels 1 

and 2, left and right mastoids; channels 3-6, anterior (ch. 3, 

5) or posterior (ch. 4, 6) to position 3C (ch. 3, 4) or 4C

(ch. 5, 6). These EEG potentials were sampled at 256 Hz. 

 All the trials were separated into a training set (268 

trials, 135 for class “0”, 133 for class “1”) and a test set 

(293 trials), both of which contained EEG data from only 

the 3.5-s feedback phase of each trial. The purpose is to 

categorize the trials in the test set into class “0” or class 

“1”. 

2.2. Feature extraction 

The standard low-level signal features are widely used in 

general audio data classification [8]. To describe the EEG 

signal, we introduce the standard low-level signal proper-

ties to the field of EEG signal analysis. These features 

include: (1) root-mean-square (RMS) level; (2) spectral 

centroid; (3) bandwidth; (4) zero-crossing rate; (5) spec-

tral roll-off frequency; (6) band energy ratio; (7) delta  

spectrum magnitude [9]. The computational details of the 

features can be referred to [8]. Due to space limitation, we 

omit their descriptions here. 

For every training trial, the feature extraction process 

is illustrated in Fig. 1.  The standard low-level features are 

calculated for every 0.5-s subframe in the 3.5-s signal 

waveform of each channel. Thus for every 0.5-s subframe, 

seven low-level features described above are obtained as 

candidate features. 

2.3. Feature selection 

Following the before-mentioned feature extraction proce-

dure, we can then select the effective features on effective 

channels for subsequent EEG signal classification. Whe-

reas, for biological signal processing, the population of 

sample is usually very small. As a result, we can only 

select a few features to represent each sample in order to 

avoid the over-fitting problem. So in the paper, we 

concentrate on how to select one best feature from the 

standard low-level signal properties. Our paradigm for 

feature selection of EEG signals is illustrated in Fig. 2. 

In step 1, for each category we average the features 

across every training trial.   And then based on the diffe-

rence between these two classes, we can find the eligible 

features and the eligible channels which are discriminative 

for classification. Now, although we know some features 

might be useful for classification, but we still do not know 

their relative performance. In step 2, for every eligible 

feature (averaged across each subframe), we average its 

classification accuracy rates on training set across eligible 

channels. Thus, we exclude the inter-channel influence, 

and can obtain a performance rank of eligible features. 

Therefore, the best feature could be identified. Finally we 

Step 1:

—  Eligible feature selection and eligible 

channel selection between two categories. 

Step 2: 

—     Effective feature selection across eligible 

channels. 

Fig. 2. Paradigm for feature selection of EEG 

signals. 

Fig. 1. Feature extraction method. 

six channels 

3.5-s analysis frame

0.5-s subframes

feature extraction
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can combine the distinguished feature found in step 2 with 

other useful features (e.g. the DC value in the potential 

waveform) to improve the classification of EEG signals. In 

the experimental section, we would display the progress of 

feature selection of EEG signals in detail. 

3. EXPERIMENTS 

In this section, we carry out classification of the given 

data set using our feature selection paradigm and the 

standard low-level signal parameters. A normal density 

distribution is fit to each class with means and covariances 

estimated from the training set. The class of a test trial was 

then predicted based on which distribution had higher 

density at the corresponding point in the feature space.  

3.1. Evaluating the classification ability of standard 

low-level EEG signal parameters 

In the first step of our feature selection paradigm, we 

compare the discriminative performance among seven 

standard low-level signal parameters and select eligible 

features for classification. Fig.3 shows the RMS 

measurements between two averaged curves of two classes. 

We concatenated the six channels from channel 1 to 

channel 6 to get a subframe series from 1 to 42. Every 

seven subframes belong to one channel. From the figure, 

we can judge that RMS is not a valid feature for EEG 

signal categorization of our data set, since the two curves 

interweaves severely (significant level p=0.19).  This 

candidate feature can be reject-ed automatically through 

computer codes. 

However, from Fig. 4 we can identify that the spectral 

centroid might be a valuable feature, since for every 

channel the value of the spectral centroid of class 0 on the 

first five subframes is almost always superior to that of 

class 1 (p<
810 ). Following this strategy, finally, we can 

find the eligible features and eligible channels, which are: 

(1) spectral centroid on each channel; (2) band width on 

each channel; (3) zero-crossing rate on each channel; (4) 

roll off frequency on the first five channels; (5) band 

energy ratio on each channel.  

Then, for every trial we average their feature value on 

different subframes to obtain a scalar measurement of the 

corresponding feature on each channel to evaluate its 

classification capability. The measurement is made on the 

average of all eligible channels. We take the DC potentials 

from channel 1 and channel 2 as the baseline feature 

(which is represented as SCP in [6]). The classification 

accuracy rates on the training set and the test set are given 

in Table 1. From Table 1, we can find that all the 

classification accuracy rates are higher than 60%, implying 

that the eligible features are beneficial for EEG signal 

categorization. 

Table 1. Average classification performance of single 

feature. 

Features Training Set 

(% correct) 

Test Set 

(% correct) 

single SCP 69.78  0.00 66.72  3.62

spectral centroid 61.38  1.41 61.04  4.08

band width 61.01  2.79 61.60  5.66

zero-crossing rate 61.01  1.27 61.21  3.54

roll off frequency 61.87  6.32 64.44  4.28

band energy ratio 60.70  3.65 63.25  5.95

3.2. Categorization using selected features and DC 

potentials (SCP) 

As article [6] reports, DC potentials (SCP) are good 

features for EEG signal classification. We now explore 

whether the standard low-level features combining with 

the SCP can further improve the final classification 

performance. First of all, we combine SCP with every 

eligible feature on each eligible channel to carry out 

categorization on the training set in order to find which 

Fig. 4. Spectral centroid measurements, training set. 

Fig. 3. RMS measurements, training set. 
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eligible feature is the most effective in combining SCPs. 

Table 2 gives the averaged classification results across 

each eligible channel on the training set. From Table 2, we 

can see that by adding eligible features, the classification 

performance is improved. This suggests us that we might 

be able to gain better results on test set by combining SCP 

with standard low-level signal parameters (e.g. spectral 

centroid) on some channel. 

In succession, we would like to find the best channel 

for denoting the spectral centroid feature or select one 

component by PCA for all the eligible channels. By 

calculating the difference of all six eligible channels of Fig. 

4, the difference for spectral centroid between class 0 and 

class 1 is obtained. Channel 4 ranks No.1, implying the 

spectral centroid on this channel might be a best feature.  

So we combine SCP with spectral centroid on channel 4 to 

carry out classification. The final results are shown in 

Table 3. Besides, we also carry out Principal Component 

Analysis (PCA) on the six channels with their spectral 

centroid features, and combine SCP with one principal 

component to carry out classification. The result is given 

in Table 3. From Table 3, we can see that we improve the 

classification results significantly, and even gain a better 

results than the best result (88.7% correct on test set) of 

BCI competition 2003—data set Ia. 

4. DISCUSSIONS AND FUTURE WORK 

In this paper, we evaluated several standard low-level 

signal features for EEG signal classification. Through 

comprehensive experiments, we demonstrate their applica-

bility and effectiveness. Besides, we proposed a paradigm 

to deal with the feature selection problem of EEG signals. 

Combining SCP with the selected features found by our 

feature selection paradigm, we significantly improved the 

classification accuracy rate and even overtop the best 

performance of the method of BCI competition 2003 on 

the same data set.  

However, since our main purpose is assessing the 

features for EEG signal categorization, we did not 

elaborately select the classification method. In the future, 

exploring better classification method would be a valuable 

direction. 
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Table 2. Average classification performance of 

multiple features. 

Features Training Set 

(% correct) 

SCP 70.9 

SCP+spectral centroid 76.68  1.84

SCP+band width 71.89  2.01

SCP+zero-crossing rate 75.25  1.45 

SCP+roll off frequency 73.96  3.91 

SCP+band energy ratio 72.33  2.65 

Table 3. Classification performance by combing SCP 

with the best spectral centroid feature. 

Features Training Set 

(% correct) 

Test Set 

(% correct) 

SCP 70.9  82.6 

SCP+spectral centroid 

on channel 4 
76.49 90.44

SCP+one principal 

component of spectral 

centroid features 

80.60 87.37
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