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ABSTRACT

A method is proposed for automatically choosing indepen-
dent components (ICs) of interest from neonatal EEG data,
with the aim of using them in further analysis to detect
seizures. This procedure greatly reduces the amount of in-
formation which needs to be processed in the seizure detec-
tion system, and reduces the effect of noise and artefacts on
its performance. The Fast ICA algorithm is used to generate
the ICs, and the complexity of each IC is examined to deter-
mine those of interest. The Singular Value Fraction (SVF)
measure is used to reduce the number of sources contain-
ing artefacts chosen. In the best case, the 12 channel EEG
used in these tests is reduced to 2 or 3 sources of interest. In
every case, at least 3 sources were removed that consisted
of noise.

1. INTRODUCTION

Although systems for the detection of epileptic seizures in
adults have been designed with varying degrees of success,
detection of the neonatal seizure is a far more complex op-
eration. Because of the ongoing development of the brain at
this age, seizure activity in neonates displays far more com-
plex characteristics than in adults. Much of the analysis of
neonatal seizures to date has concentrated on single-channel
analysis [1, 2]. However, it is clear from the methodology
which EEG experts use to classify neonatal EEG that a reli-
able neonatal seizure detection system will have to incorpo-
rate multi-channel analysis.

As a first stage to such a system it would be useful to
reduce the amount of information which needs to be ex-
amined in depth, and concentrate analysis on data where
some deviation from normal activity is evident. The EEG
being examined is recorded at 200Hz in 12 channels, result-
ing in 2400 samples per second. With the availability of so
much data, the computational load associated with the real-
time application of detection algorithms becomes excessive
leading to hardware solutions which are larger, more com-
plicated and hence expensive. If elements of interest could

be extracted from the EEG and analysed without having to
analyse background EEG activity, it would greatly decrease
the computational burden and simplify the seizure detection
process.

Independent Component Analysis (ICA) is a technique
for separating an observed set of signals into a set of sta-
tistically independent source signals, or independent com-
ponents (ICs). Using this technique background activity,
artefacts and seizure activity can be separated into differ-
ent ICs. However, the major disadvantage with ICA is that
the resulting ICs are not ordered in any way, and hence a
method is needed to extract the ICs of interest at the output.

In this paper, it is proposed to use a combination of
the complexity measure (Ω) developed by Roberts et al. [3]
and the Singular Value Fraction (SVF) measure proposed
by Kember and Fowler [4] to determine the ICs of interest.

2. METHODS

2.1. Independent component analysis

The ICA separation process is carried out without prior knowl-
edge of the distribution of the sources, and is hence denoted
Blind Source Separation (BSS). ICA can be seen as an evo-
lution of Principle Component Analysis (PCA). However,
ICA uses higher order statistics than PCA, and can find in-
dependent sources in cases where PCA fails.

There are many implementations of ICA techniques. In
this paper the FastICA algorithm [5] is used. This approach
is well documented and used widely in this field of research.
It is straightforward to implement, fast and efficient.

The main disadvantage to ICA is that, unlike PCA, the
output ICs are not ordered in any context. Hence they must
be examined further to extract the source(s) required by the
application. One method used to extract particular ICs is
to use a reference signal which mimics the shape and tim-
ing of the desired source. This approach is known as Con-
strained ICA (cICA), and is used in artefact removal algo-
rithms [6]. However, as the first stage of a proposed seizure
detection system for neonates, it is only necessary to isolate
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ICs that show evidence of activity, seizure or artefact, which
will then be passed on for further tests. Also, using refer-
ence signals to remove artefacts may inadvertently remove
neonatal seizure activity as some of the reference signals
may be highly correlated with seizure sources as well as
artefact sources.

2.2. Embedding space decomposition

To examine the ICs Takens method [7] is first utilised to per-
form an embedding space decomposition. M data points are
selected from the IC and a trajectory matrix Xtraj of dimen-
sion dE×N is then constructed, where dE is the embedding
dimension and N = M − dE + 1.

The rows of the trajectory matrix are made up of em-
bedding vectors constructed by

Xi = [xi−(dE−1)∆, xi−(dE−2)∆ . . . xi]T (dE ≤ i ≤ M)
(1)

where ∆ is the lag measured in number of data points. ∆
and dE are chosen using a plot of ∆ versus the Singular
Value Fraction [4]. From analysis of these plots over a set
of neonatal EEG it was calculated that ∆ = 1 and dE = 20
are sufficient.

The trajectory matrix is then composed by

Xtraj = [XdE
, XdE+1 . . . XM ]T (2)

2.3. Complexity analysis

Performing singular value decomposition (SVD) on the tra-
jectory matrix Xtraj the singular values σ1 . . . σN can be
found. Using the methods of Roberts et al. [3] the entropy
of the singular spectrum is defined by first normalising the
singular values such that

σ̄j = σj/
∑

i

σi (3)

for j = 1 . . . N , and then defining the entropy

H = −
N∑

i=1

σ̄i log σ̄i (4)

The complexity of the data in each IC is measured by the
number of states Ω and is defined as

Ω = 2H (5)

From previous work in the area of analysis of epileptic
seizures in adults [8] it was shown that at epileptic seizure
onset the number of states Ω generally decreased in ICs con-
taining seizure activity, although no automatic means of ex-
tracting the ICs containing seizure activity has been devel-
oped. Therefore in this analysis Ω will be used to search for
the ICs of interest.

2.4. Singular value fraction

Although the work carried out in complexity analysis shows
that Ω drops at seizure onset, it is clear that it also drops for
artefacts. Although the aim at this point is not to separate all
artefacts from the data, it would be an advantage to remove
the more obvious artefacts in the process.

From examination of singular values from sections of
neonatal EEG, it is clear that there are different trends for
the values obtained from non-seizure, seizure and artefact
EEG. In [4] the SVF term is defined which gives the frac-
tional power in the first k singular values. The SVF is de-
fined as

SV F (k) = 1 − 1
(dE − k)N

dE∑

i=k+1

σ2
i (6)

The choice of k is suggested as either k = 1 or k = dA/2
(where dA is the number of indices for which σi > δ, some
small noise threshold). In this study k = 1 was used.

The SVF shows a pronounced change in value in the
presence of artefacts, more so than the change in Ω and can
therefore be used to signify those ICs in which the artefacts
appear.

2.5. Choosing/excluding ICs

The ICs that are of interest for use in the seizure detec-
tion process are the ICs with lower complexity, Ω, and little
change in the SVF.

Each IC in turn is windowed and the median value of
Ω is calculated over that window. ICs which contain noise
without any other significant information have much higher
Ω values and these are separated at this point by clustering
the median values. The remaining ICs median Ω values are
scaled from the IC with the minimum median Ω, scaled to
0, to the IC with the maximum median Ω, scaled to 1.

The variance of the SVF is then calculated on each win-
dowed IC (except those excluded by the clustering opera-
tion). For ICs containing isolated, unwanted activity the
SVF will have a large variance compared to those ICs that
contain information of interest. The variance of the SVF is
also scaled as described above. The scaled values for Ω and
the SVF are then added together, giving a value close to 0
for ICs which contain seizure information and values close
to 2 for those which contain no traces of seizure activity. If
the total for an IC is less than 1 it is selected as being ’of
interest’.

It is obvious at this point that this stage must be designed
to select too many ICs rather than too few (high sensitivity,
low selectivity). If too few ICs are chosen then seizure in-
formation could be lost and this would lead to a poor detec-
tion rate for the system as a whole.
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3. RESULTS

A total of 4 hours of seizure data from 4 neonates was cho-
sen (different from training data) for evaluation of this tech-
nique. All data was collected from newborn babies with
seizures in the neonatal intensive care units of Kings Col-
lege Hospital in London, UK and Cork University Maternity
Hospital, Ireland. A Telefactor Beehive video-EEG system
or a Taugagreining Nervus Monitor was used to record 12
channels of EEG using the 10-20 system of electrode place-
ment modified for neonates (F4−C4, C4−P4, P4−O2, F3−
C3, C3 − P3, P3 − O1, T4 − C4, C4 − Cz, Cz − C3, C3 −
T3, T4 − O2, T3 − O1). A video recording was made of
each neonate for the duration of the study. A clinical neuro-
physiologist identified and classified all periods of seizure
activity in each EEG recording.

In all cases those ICs which could be seen to hold the
majority of the seizure information were picked out suc-
cessfully by the selection algorithm. In many cases an IC
containing a low frequency near-sinusoidal signal was also
chosen by the algorithm. This signal is hypothesised, from
its frequency and morphology, to be a trace of the neonates
respiration. Although it could be removed, the overall per-
formance of the algorithm is not affected. In some cases
ICs secondary to the main information bearing IC that were
also deemed of interest were not selected by the algorithm.
However, in all of these cases ICs with similar information
were selected, and no loss in performance was suffered.

In cases where only very few ICs contained information
of interest, there was a corresponding reduction in the num-
ber of ICs selected. In the best of these cases the amount
of data was cut from the initial 12 ICs down to 3 or 4, a
reduction of ∼ 70%. Even in cases where the seizure activ-
ity was evident across nearly all of the ICs, there were still
3 or 4 ICs containing noise which could be excluded from
further analysis, hence still reducing the amount of data in
the worst cases by ∼ 30%. The algorithm was successful in
rejecting ICs containing isolated bursts of activity without
seizure information.

Fig. 1 shows an example of 20 seconds of seizure EEG
from a neonate. The seizure is evident on multiple chan-
nels and there is a burst of unrelated activity at 2000 sam-
ples. Fig. 2 shows the ICs calculated, and it is clear that the
seizure activity has been sourced to one primary and one
secondary IC (marked by the arrows). ICs containing noise
can clearly be seen in ICs 9 through 12. It is also clear that
the short burst of activity mentioned above affects the ’non-
seizure’ ICs more than the others, as expected.

Fig. 3 shows the Ω and SVF values calculated for each
IC (seizure ICs in bold). The Ω values for the primary
seizure IC are considerably less than the others, and the val-
ues for the secondary IC are also low. The Ω values for the
’noisy’ ICs are clearly separated from the others towards

the top of the plot. The SVF values show the effect of the
burst of activity that was seen in Figs. 1 & 2 as large de-
creases in the SVF values for the respective ICs. However,
the two seizure ICs are not affected by the burst, and hence
their variances are considerably lower. The ’noise’ ICs lie
at the bottom of the plot with much lower SVF values. Ta-
ble 4 shows the results for each IC including the score re-
ceived from the sum of the two scaled measures (section
2.5) and the resulting action. IC 6 had both the lowest me-
dian number of states and the lowest variance in SVF and
hence scored 0. IC 2 was the only other IC to score under 1.

4. CONCLUSIONS

As a first stage to a seizure detection system for neonates,
a method of data reduction is needed wherein no important
information is lost. This approach utilises ICA to obtain
statistically independent sources and a complexity measure
Ω and the SVF to choose the ICs of interest.

Although studies have previously been carried out us-
ing ICA to examine EEG, in most cases these use reference
signals to find artefacts or spikes in the EEG. In this study
no a priori information was assumed, making this method a
more robust alternative.

As well as simply being a data reduction process, the use
of the median Ω and the variance of the SVF allows the ex-
clusion of ICs containing artefacts and noise, which should
increase the performance of the seizure detection system as
a whole over a system which analyses raw EEG.

Many routines were tested for choosing the appropriate
ICs. Originally a threshold approach was tested to choose
the ICs, but this only gave simple positive or negative results
for each IC. Also the trends in Ω and the SVF shift from one
EEG sample to the next, making it difficult to choose robust
thresholds. A ranking routine was also tested, but while it
did order the outputs by how likely they were to contain
information of interest, it gave no means by which to cut off
the number of ICs being selected.

The scaling routine provides a ranking of the ICs, but
also a value from which the number of ICs to be chosen can
be derived. The use of a threshold along with the scaling
routine means that the threshold shifts in relation to the in-
put data, providing a consistent selection of the correct ICs.
Before its implementation in a neonatal seizure detection
system, further tests are being carried out in this technique
using a larger data set.
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