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ABSTRACT 

Intensity Modulated Radiotherapy is a technique used in 

the treatment of cancer based on the use of different 

spatially distributed X-Ray beams. The task of treatment 

planning is to determine the dose quantity that each beam 

of radiation should deliver, and for each spatial direction, 

and so determining a specific dosage distribution for the 

patient. In this paper a conditional optimization problem 

is studied, proposing a new reduction method for the 

dimensions of this problem. The procedure proposed has 

been used in the planning of the treatment for a real case 

of prostate cancer, where satisfactory results have been 

obtained.

1. INTRODUCTION 

Treatment planning for intensity modulated radio therapy 

(IRMT) requires the intensity masks for each one of the 

beams of radiation to be obtained; with the objective of 

attaining a dose distribution across the area of the tumour 

which best matches the dose prescribed by the medical 

specialist [1]. 

To solve this problem a mathematical model must to be 

established, for this model the volume to be treated and 

the beams of radiation are considered discrete elements. 

On one side, the patient volume is divided into small 

three-dimensional cubes, called voxels. On the other side, 

the beams radiation are divided into small two-

dimensional cells, perpendicular to the beam of radiation, 

in such a way that the radiated intensity in each spatial 

direction is described by a fluence map or weight matrix. 

The dose received in a given voxel of the patient is 

obtained as the sum of the contributions of each of the 

beams of radiation, a contribution which depends also on 

the direction of each ray within the beam and is a function 

of the distance that the ray travels inside the patient. 

Once a mathematical model has been obtained relating the 

fluence matrix to the dose obtained in the interior volume 

of the patient, it is possible to deal with the treatment plan 

(the inverse problem). The objective is to obtain a set of 

weights such that the dose prescribed by the specialist is 

reached in the targeted volume. The optimization process 

meets two fundamental purposes: achieve a high dose 

which is homogeneous across the tumour, and protect the 

rest of the healthy tissue. These aims are inherently 

contradictive, and so a compromise must be reached 

between them. The consideration of a weighting factor in 

the error function allows more or less aggressive 

treatments on the healthy tissue to be achieved. 

One of the main difficulties when resolving the inverse 

problem is the possibility of multiple solutions which can 

result in local minimums of the error function [2]. 

2. BASIC CONCEPT OF THE METHOD 

Therapy with X-Rays requires a mathematical model to be 

established that describes the relation between the dose 

radiated by the beams and the dose distributed over the 

affected volume of the patient. 

The dose that each of the voxels of the volume receives is 

determined by the relation: 
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where n is the number of weights of the set of the fluence 

matrices, m is the number of voxels in which the treated 

volume is divided, wj is the value of the jth weight and fij

is the attenuation suffered by the X-Rays from the jth cell 

of the grid to the ith voxel. 

The reordering of the weights wi of the fluence matrices in 

a vector w allows the previous expression to be expressed 

as a matrix, 

oD F w

Where F is a mxn matrix whose elements are the 

coefficients fij being Do a vector of dimensions m that 

contains the dose in the different voxels of the volume. 

Each one of the weights wj of each beam has an influence 

over a region of the volume, determined by a conical 

surface of revolution. Consequently, once the regions of 

the volume radiated by each weight are delimited, the 

dose obtained for a specific intensity mask can be found 

directly. 

Where the matrix F is obtained calculating the attenuation 

suffered by the X-Ray beams from the position occupied 

by the jth weight up to the isocentre of the ith voxel 

according to the expression: 
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Being pij the distance travelled by the beam in the interior 

of the patient and  the coefficient of attenuation. 

The inverse problem for the radiotherapy treatment 

planning is based on the knowledge of F, and implies the 

seeking of the weight vector w that approximates the dose 

prescribed by the oncology specialist. With this finality, 

an error function G(w) has been considered constructed 

by the sum of the quadratic terms, where the error 

produced in the different structures of the affected volume 

are weighted with a coefficient Pk.

As V structures of the volume are considered, assigning 

an index Tk to each structure, and considering that in each 

structure there are NTk voxels, the desired function can de 

expressed as: 
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Where Fk is a matrix formed by the rows i of matrix F 

such that i Tk and, likewise, Dpk is a vector formed by 

the elements i of Dp such that i Tk.

One possible election is to solely consider two structures 

on the volume, one of which contains the tumour (Clinical 

Target Volume CTV), and the other should contain the 

organs at risk (OAR), in which it is necessary to limit the 

quantity of radiation received. 

When considering the rows of matrix F that belong to the 

structure that contains the organs at risk, matrix A is 

obtained. This is such that the limitation of the dose on 

these organs imposes: 
Aw L

Where L is a vector that contains the information of the 

maximum dose for the organs at risk. 

Furthermore, given that the elements wj of the fluence 

matrix represent radiation intensities, and these are 

positive quantities, to obtain a physically significant 

solution it is necessary to impose an additional restriction 

owing to the non-negativity of the weights (w 0). 

This allows the planning process to be described by a 

conditioned optimization problem: 

 Minimise: 
1

2
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whose resolution has been carried out with the 

Lemke’s algorithm for a linear complementary problem 

(LCP) and the Rosen gradient projection method [3]. 

Lemke’s algorithm uses the simplex method as an 

effective solution to the LCP, but its complexity does not 

permit a mathematical explanation in this paper [4]. 

However, the more intuitive Rosen’s method is based on 

the feasible directions theory, such that the search for a 

solution is carried out within the feasible region, through a 

direction that reduces the desired function and respects all 

the conditions. 

The Rosen’s method obtains the solution by an 

iterative process in which the solution wk in the kth

iteration is updated following the expression: 
1k kw w d

according to the search for the direction d which is most 

similar to the opposite of the gradient vector of the desired 

function in wk

( )k kG w Q w R

and which also meets the feasibility and descent 

conditions. For the direction d to be descent, so that the 

value of the desired function is reduced, the following 

equation should be met. 
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Whilst the feasibility condition, assuming that the point 

wk is feasible, requires that for all the active conditions in 

wk (conditions that are within the limit of the equality 

of wk) meet: 
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where ai are the rows of A that meet the condition 

0i k ia w L .

The parameter  represents the distance travelled along 

the length of the normalized search direction d , and its 

value is either the distance to the intersection of the 

closest active condition, or the distance *  that meets the 

condition 

* *

*
0k T kd
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The iterative process is repeated until it becomes 

impossible to find a feasible descent direction. 

The methods for conditioned optimization are based on 

the Lagrange theory, and the difficulty of inequality 

conditions in conditioned optimization problems requires 

the introduction of slack and surplus variables [3]. 

The limitation of the dose in the ith voxel to a value Li

corresponding to an organ at risk is represented by: 
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Therefore, in the case in question, these variables must be 

incorporated to translate the unequal conditions into 

conditions of equality. This is such that introducing the 

slack variables, the previous equation is transformed into 

an equation of equality. 
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As ri
2is a positive term, the received dose by the ith voxel 

does not surpass the limit Li established. 

In the same way, the condition of non-negativity of the 

weights is solved, where surplus variables are used to 

translate. 
2
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This is such that the greater the number of restrictions on 

the dose, and the higher the number of weights, the 

greater the number of variables. In the application 

presented, the high number of variables needed, due in 

part to the restrictions of the voxels belonging to the 

OARs and also to the great number of weights of the 

fluence matrices, makes the resolution a priori 

unattainable. In the prostate case considered, this implies 

8203 conditions in the OARs, and 266 variables to be 

determined assuming treatment with 5 beams. For this 

reason, in this article, a series of reductions are proposed 

which permit the problem to be solved. 

3. REDUCTION OF THE DIMENSIONALITY 

First, with respect to the volume under treatment, an 

initial reduction has been made that consists in imposing 

dose conditions on those elements or voxels of the OARs 

that belong to the boundary area of these organs. Given 

that the dose limitation in these boundary areas means a 

limitation in the interior, due to the type of problem. With 

this objective, the voxels are selected that belong to the 

OARs and are adjacent to other organs to which 

restrictions are applied. In the considered case, 8203 

voxels belong to OARs, and 2747 constitute the boundary 

area, with which the number of conditions is reduced 

considerable. 

Regarding the reduction in the number of variables, the 

proposed beam tracing system calculates the size of the 

fluence matrices to adjust the opening of the distinct 

beams to the size of the tumour, even when the volume 

containing the tumour and the OARs is very large. 

For this reason, if on the matrix F, there is any column j 

whose elements do not provide any radiation to the voxels

of the tumour, this means that any positive valour of the jth

weight could distribute radiation on healthy tissue sparing 

the tumour, so the jth column may be removed from the 

matrix and a null value assigned to the associated weight, 

allowing a reduction in the number of variables or weights 

to be determined. This will be: 

0 : 0 ,j ij CTVw j f i T

with which the dose in any one of the voxels is 

independent of wj , and this unknown can be excluded 

from the problem directly assigning to it a null value. 

4. RESULTS 

In this section results are shown for the proposed method, 

considering a real case of prostate cancer. The volume 

affected by the tumour comprises of the prostate (CTV), 

the rectum (OAR1), the bladder (OAR2) and unspecified 

healthy tissue 

In order to solve this case a volume of 621 cm3 has been 

considered, such that taking voxels with dimensions of 

15 mm2, it is composed of 39744 voxels, of which 

1441 belong to the CTV, 2323 to OAR1 and 5880 to 

OAR2. In the discretisation of the beams, considering 5 

beams and opening beamlets of 10mm, 266 weights are 

originated, and so the matrix F has dimensions of 

39744 266 . Considering an opening of 5mm originates 

671 weights. 

In the case of beamlets of 10mm this matrix F contains 

76361 non-null elements, that imply 0.72% of the total 

elements. When eliminating the voxels that do not receive 

radiation from any of the weights, the dimension of the 

matrix becomes 23578 266 . Of the useful 23578 voxels;

1155 belong to the OAR1, and 946 to the OAR2. 

Selecting only the voxels on the boundary area of the 

OARs, 982 voxels exist on which restrictions must be 

imposed. This means an important reduction with respect 

to the initial situation where it would have been necessary 

to impose restrictions on 8203 voxels related to the OARs. 
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Dose-Volume Histogram 

Fig. 1. Dose-volume histograms with limitations of dose in 

the OARs for different values of LOAR1 .
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However, on the other hand, an important proportion is 

obtained in the volume of the rectum (OAR1) that exceeds 

the recommended dose (10 Gy), for which this organ 

would be damaged. 

When limitations are introduced on the dose in the 

boundary area of the organs at risk, so that the 

rectum (OAR1) does not exceed 10 Gy, the results shown 

in Fig. 1 are obtained. Included in this same figure are 

results obtained when considering the superior limit for 

the dose on the rectum of 20 Gy and 30 Gy, intended to 

contrast the benefits of the methods proposed in this work. 

It is observed that the curve in the OAR1 histogram falls 

down when the dose limit is reached for each case, and so 

meets the restriction. This results in some of the voxels of 

the CTV not reaching their prescribed dose, these 

correspond to prostate voxels close to the rectum, which is 

totally reasonable. 

In the same way, it should be noted that the imposition of 

conditions in the bladder (OAR2) do not affect the results 

due to the fact that for the location of the beams 

considered none of the bladder voxels receive radiation. 

Furthermore, it can be seen that the number of prostate 

voxels that do not reach the prescribed dose increases 

when the dose limit imposed on the rectum is reduced. 

A different way of solving this problem is imposing a 

minimum dose in the tumour while keeping the healthy 

tissue safe with a higher weight coefficient. In this case 

we employ a coefficient of 0.72 for the OAR’s and a 

minimum dose of 100 Gy has been imposed on the 

bounds of the CTV obtaining the following results. 

The histogram (Fig. 2) shows that the 100% of the CTV 

receives at least 90 Gy, while the OAR1 stays well 

protected. 

Finally, a comparison has been drawn on the results 

obtained by Lemke’s algorithm and those obtained by 

Rosen’s gradient projection method. In Table 1, LOAR1

indicates the upper limit of the dose of OAR1 and UCTV is

the minimum dose required in the bounds of the CTV. 
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Fig. 2. Dose-volume histogram with limitation of minimum 

dose on the bounds of the CTV. 

LOAR1 UCTV DCTV DOAR1 Daire CTV OAR1 aire T (s)

- - 59.45 7.52 9.56 1.64 12.89 13.99 1

Lemk

e

10 - 57.97 2.10 8.69 8.35 3.55 14.08 8

10mm

- 60 64.32 5.94 10.25 4.12 11.56 15.69 126 

- - 59.45 7.52 9.56 1.64 12.89 13.99 193 

Rosen
10 - 58.48 1.82 8.43 6.96 3.33 14.05 143 

- 60 61.71 4.28 9.42 8.72 8.76 14.52 83 

- - 59.61 4.95 7.15 1.09 9.01 11.97 40 

5mm

Lemk

e

10 - 58.71 1.57 6.61 6.27 2.92 12.21 180 

- 60 61.73 3.17 7.31 3.84 6.93 12.65 2400

Table 1. Comparison of the results obtained. 

Where as DCTV, DOAR1, and Dair are the mean doses, 

expressed in Gy, obtained in the CTV, OAR1, and healthy 

tissue, respectively. In the same table, the standard 

deviations and the execution times (in seconds) of the 

algorithms developed in MatLab are included. 

5. CONCLUSIONS 

In this article, we show the advantages of employing 

conditioned optimization methods in the planning of 

intensity modulated radiotherapy for the treatment of 

cancer, which allows limits to be imposed on the dose 

received by organs at risk. The reductions proposed in the 

dimensions of the problem have shown their efficiency 

equally in the reduction of execution time of the 

algorithms, as well as in the protection of the volume of 

certain structures. 
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