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ABSTRACT

We study the performance of five blind source separation (BSS)
algorithms when applied to analysis of functional magnetic reso-
nance imaging (fMRI) data. We introduce a Matlab-based toolbox,
the group ICA of fMRI toolbox (GIFT), which enables analysis of
groups of subjects using BSS algorithms, in particular those based
on independent component analysis (ICA). We use the visualiza-
tion and computational tools included in GIFT to quantitatively an-
alyze the performance of different BSS algorithms for fMRI anal-
ysis and discuss the results.

1. INTRODUCTION

Blind source separation, in particular independent component ana-
lysis, has been successfully applied to functional Magnetic Reso-
nance Imaging data [14]. Majority of applications of ICA to fMRI
use the Infomax [1] algorithm, and few comparative studies [8, 16]
included the use of FastICA algorithm [11] and the second-order
Molgedey-Schuster algorithm [15]. In this paper, we study the
performances of a number of BSS/ICA algorithms when applied
to fMRI data in the user-friendly environment of a Matlab-based
toolbox, GIFT [12].

Group analysis of fMRI is important to study specific clini-
cal and experimental conditions within or between groups of sub-
jects. Unlike the general linear model (GLM) and other univariate
methods that can easily be generalized to group analysis, subjects
as processed by ICA do not share common regressors thus mak-
ing it difficult to draw group inferences. GIFT implements group
study of fMRI data using the group ICA method introduced in [3].
The toolbox includes options for data preprocessing, analysis us-
ing BSS/ICA, and visualization tools that can qualitatively evalu-
ate separation results within a user friendly graphical interface. A
number of algorithms have been implemented in GIFT (using the
versions of these algorithms available online and from ICALAB
[6]) and those we have used for the comparative study in this pa-
per are: Infomax [1], FastICA [11], joint approximate diagonal-
ization of eigenmatrices (JADE) [5], simultaneous blind extrac-
tion using cumulants (SIMBEC) [7], and algorithm for multiple
unknown signal extraction (AMUSE) [18] using delay estimation
[9]. In this paper, we use both simulated fMRI-like data and ac-
tual fMRI data for the task, address the properties of the expected
sources (components) in fMRI data and discuss how these algo-
rithms behave for the separation of these and what the tradeoffs
are.
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2. ICA OF FMRI DATA

FMRI is a technique to measure brain activity by recording chang-
es in the magnetic properties of oxygenated and de-oxygenated
blood due to neuronal activation. The fMRI data is acquired by
recording these blood oxygen level dependent changes by repeat-
edly scanning brain slices while applying functional stimuli.

Localization and connectionism [17] are said to be the two
main characteristics of the brain. This implies that different areas
of the brain are responsible for different functions and there is ei-
ther highly localized or functionally distributed activity in spatially
independent areas. An additional assumption of the brain function
model is that its hemodynamic response function causes mixing
of the neuronal activity in adjacent or overlapping sources result-
ing in a linear mixture of activity in each slice. ICA algorithms
are applied to fMRI to separate the mixture into either spatially
independent brain maps and their activation time courses (spatial
ICA) or temporally independent time courses and the correspond-
ing spatial maps (temporal ICA).

In this paper, we focus on the spatial ICA model which aims to
factorize the mixture X into independent brain maps, each with a
corresponding time course of activation as X = AS. The dimen-
sions of matrix A are determined by the number of time points
and the number of sources; each element a;; represents the level
of activation of the 5" source at the i*" time point. The dimen-
sions of source matrix S are determined by the number of sources
and the number of voxels; each element s;; determines the con-
tribution of the j** source to the k' voxel. Hence, not only the
sources but also the time courses of the separated components are
estimated. Obviously, this is not the case for GLM and other simi-
lar regression-type methods, where a temporal model is convolved
with an estimate of the hemodynamic function and then used as
the time course. Thus ICA analysis could reveal characteristics
of the brain function that cannot be modelled due to lack of prior
information, making ICA a popular tool for fMRI analysis.

3. TOOLBOX

3.1. GIFT

GIFT is a MATLAB-based ICA/BSS tool that includes a number
of analysis and visualization tools in a user friendly graphical in-
terface. In this paper, we use the analysis tools to perform ICA on
fMRI and fMRI-like data and use the visualization tools to draw
inferences on the results obtained.

The analysis tools consist of three processing steps: 1) Pre-
ICA: The processing of high-dimensional fMRI data poses com-
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putational difficulties and calls for data reduction prior to source
separation by the chosen algorithm. In GIFT, principal component
analysis (PCA) is used to whiten the data by performing an orthog-
onal transformation and to reduce the number of principal compo-
nents present in the mixture. 2) ICA/BSS: The reduced data is then
concatenated together and processed by a selected separation algo-
rithm. Thus instead of performing ICA on each subject and then
ordering components for comparison across subjects, this method
combines the reduced data from different subjects before perform-
ing ICA. 3) Post-ICA: The estimated components are representa-
tive of the group of subjects and steps such as back-reconstruction
are included to obtain individual subject components.

The visualization tools include methods to correlate the ob-
tained spatial maps and time courses to corresponding a priori ex-
periment based paradigms, which are useful to categorize compo-
nents into task-related, transiently task-related, physiology-rela-
ted, and motion-related components. A brief discussion on the
statistical properties of these components is included in the next
section. In this paper, while evaluating the results for an fMRI ex-
periment, we use the temporal multiple regression sorting option
in GIFT to find the two most task-related components.

3.2. Algorithms Tested

A number of ICA/BSS algorithms have been included in GIFT.
Here we briefly introduce the five algorithms whose performance
we compare in this paper.

Infomax [1] maximizes the information transfer from the input
to the output of a network using a non-linear function. We use the
extended Infomax algorithm [13] to improve separation of sources
from a mixture containing both super-gaussian (sources of interest)
and sub-gaussian sources (artifacts) with natural gradient updates.

FastICA [11] maximizes the higher order statistics or the ne-
gentropy of the output to maximize the non-gaussianity of the es-
timated sources using fixed-point iterations. We use the symmet-
ric FastICA approach with non-linearities tanh, gauss, and pow3
[10] to study its separation behavior.

JADE [5] uses the Jacobi technique, to perform joint approxi-
mate diagonalization on fourth order cumulant matrices to achieve
spatial independence among sources. We use the Matlab optimized
version of JADE with a reduced number of eigenmatrices [6].

SIMBEC [7] uses natural gradient ascent in a Stiefel manifold
to simultaneously extract sources using a contrast function based
on higher order cumulants with a learning rate that provides fast
convergence.

AMUSE [18] is a second order BSS algorithm that utilizes the
structure within the data to obtain uncorrelated components. It per-
forms singular value decomposition on the shifted cross-variance
matrix and the shift is chosen such that the autocorrelations of
sources at that shift are non-zero and as different from each other
as possible. To choose the shift, we use the method introduced in
[9] for the Molgedey-Schuster [15] algorithm, which is based on
the same principle as AMUSE.

Codes used in GIFT for SIMBEC and AMUSE are those im-
plemented in ICALAB [6], which is a MATLAB-based toolbox for
BSS. The codes for the other three algorithms are available online.

4. PROPERTIES OF FMRI SOURCES

We give a brief overview of fMRI source properties as these prop-
erties help in evaluating the separation behavior of the algorithms.

FMRI sources can be classified into sources of interest and ar-
tifacts [2]. The sources of interest include task-related, transiently
task-related, and function-related sources. These sources are typ-
ically super-gaussian in nature because of localization of brain
functionality. A task-related source (component) closely matches
the experimental paradigm. A transiently task-related time course,
on the other hand, is similar to a task-related time course but with
an activation that may be pronounced during the beginning of each
task cycle and may fade out or change as time progresses. Func-
tional sources are those activated areas which are related to a par-
ticular functional area of the brain and are those for which the time
course exhibits no particular pattern.

The class of uninteresting sources or artifacts include motion
related sources due to head movement, respiration, and cardiac
pulsation. The time course for head motion may vary slowly with
sudden transient fluctuations. The time courses of the respiratory
and cardiac pulsation components may appear to be random fluc-
tuations. Scanner drift is another artifact and is characterized by a
slowly rising time course. The activation areas due to artifacts are
usually spread over a wider area and are sub-gaussian in nature.

The simulated fMRI-like data given in the next section in-
cludes a representative set from both types of sources, those that
are of interest and those that are due to artifacts.

5. EXPERIMENT
5.1. Simulated fMRI-like data

Original Sources

Separated Sources

U
e
o

Fig. 1. Original and estimated sources using Infomax for Set-2
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Using the basic knowledge of the statistical characteristics of
the underlying sources as explained in Section 4, we simulate fM-
RI-like source images and mix them with the selected time courses
to obtain a set of mixtures. We present results with two data
sets. Set-1 (first five in Fig. 1) consists of three highly super-
gaussian sources, a gaussian source and a sub-gaussian source and
the time courses represent sources that are task-related (S1), tran-
siently task-related (S2) and artifact-related (S3, S4, and S5). Set-2
given in Fig. 1, consists of the same five sources with an additional
sub-gaussian source (S7) and two more super-gaussian sources
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Spatial Correlation Coefficients Convergence Time (seconds)
ST 52 53 54 S5 Set-1 Set-2
Algorithm K=2327 | k=2580 | k=—-1.15| k=043 | Kk =23.64
FastICA gauss | 0.95+0.07 | 0.95£0.12 | 0.86£0.12 | 0.91£0.13 | 0.97£0.07 | 0.6+0.36 20.35£2
FastICA tanh 0.98£0 1£0 0.83£0.13 | 0.87£0.14 1£0 0.43£0.28 20.35£6.75
FastICA pow3 0.97£0 1£0 0.78£0.13 | 0.81£0.14 0.9910 0.65£0.32 26.36E6.61
Infomax 0.96£0 0.99£0 0.95£0.01 | 0.97£0.01 0.98+£0 10.95£1.28 | 13.29£1.79
JADE 0.93 1 0.9 0.94 0.99 0.05 0.19
SIMBEC 0.98 0.93 0.98 0.71 0.6 0.25 0.28
AMUSE 0.921£0.02 | 0.77£0.04 1£0 0.75£0.08 0.921+0 0.89£0.24 1.1T£0.64

Table 1. Correlation of original and estimated sources for Set-1 and convergence time for both sets (x denotes the kurtosis)

with transiently task-related and random (artifact) time courses (S6
and S8 respectively). Each simulated source is a 60 x 60 image
with a 100-point time course. The image data is reshaped into vec-
tors by concatenating columns of the image matrix. The source
matrix S is multiplied by the time course matrix A to obtain a
mixture that simulates 100 scans of a single slice.

Twenty runs are performed for FastICA and Infomax to take
into account random initial conditions. Due to the dependence on
the choice of the spatial shift we perform twenty runs on AMUSE
and change the initial shift value for each run. JADE and SIMBEC
are deterministic algorithms and hence the results are given for a
single run. To quantify performance, the averages are calculated
over different runs for the temporal and spatial correlation of the
estimated and the original sources. Spatial correlation coefficients
for Set-1 and time taken by each algorithm for both sets are given
in Table 1. Due to space limitations, the numerical values for the
temporal correlation results of Set-1 and the results for Set-2 are
not given. However, we present a brief overview of these results.

All five algorithms were able to achieve some separation of
the sources, with significant performance differences especially for
the second data set. The performances of Infomax and JADE were
comparable for most cases, with Infomax yielding slightly better
overall performance.

FastICA yields high spatial correlation values for super-gauss-
ian sources and slightly lower values for the other sources. For
Set-1, FastICA with the gauss non-linearity provides better per-
formance compared to the other two non-linearities for the gaus-
sian and sub-gaussian sources. However, for Set-2 all three non-
linearities result in very similar performance. Overall, the general
performance of FastICA using tanh is better than the results ob-
tained using the other two non-linearities.

SIMBEC performs well for the sources of interest in Set-1,
e.g., for the task-related source S1 and transiently task-related sou-
rce S2 and also for the sub-gaussian source S3. However, the
results for Set-2 using SIMBEC, were poor except for the sub-
gaussian sources. For Set-1, AMUSE fails to completely separate
sources S2 and S4 but performs well for the other sources while
for Set-2, it almost completely fails.

Temporal correlation of the time courses in Set-1 is high for
all the algorithms except AMUSE which has trouble estimating
the transiently task-related time course. SIMBEC fails to estimate
some of the time courses, it results in a null time course for sources
S4 and S6. All the algorithms were unable to completely identify
the random time course of source S5. The temporal correlation
coefficients for Set-2 are in general lower than those for Set-1.

In terms of convergence, Infomax has been the slowest for Set-
1. For Set-2, FastICA exhibited the slowest convergence due to
stability problems and we used the stabilized version of FastICA
to achieve convergence for this set. In our runs with other sim-

ulated data, the convergence problems seemed to be pronounced
when more than one sub-gaussian source was present in the mix-
ture. In the stabilized version, the step size is halved if conver-
gence is not reached after half the maximum number of iterations
and also when the algorithm is stuck between two points.

5.2. FMRI data

Algorithm Temporal MCCs Time (sec)
FastICA gauss | 0.75£0.01 0.65+£0.03 2+1.07
FastICA tanh | 0.75£0.01 0.66+0.01 1.15£1.41
FastICA pow3 | 0.78£0.03 0.68+£0.02 14.1218.89
Infomax 0.77£0 0.65+£0 0.9+0.12
JADE 0.73 0.65 1.09
SIMBEC 0.7 0.63 & 0.51™) 0.17
AMUSE 0.84+0.01 0.46+0.08 0.721£0.55

Table 2. Temporal multiple correlation coefficients (MCCs) for
the two most task-related components and convergence time

‘We perform group ICA on fMRI data from three subjects per-
forming a visuomotor task [4]. A single slice passing through the
visual cortex is analyzed for each subject. Using PCA, each sub-
ject’s data is first reduced to twenty components. After concatenat-
ing the reduced components from the three subjects, we perform
a second reduction step and reduce the number of components to
eight, as discussed in [3] . The separation results thus will be repre-
sentative of the entire group and not the individual subjects. Using
GIFT, we scale the results to Z-scores and set the threshold value
to Z = 1.5. The separated components are sorted using tempo-
ral multiple regression by comparing the estimated time courses
to the model paradigm to find the two most task-related compo-
nents. In this case, for the non-deterministic algorithms, ten runs
are performed and the stabilized version of FastICA is used since
the algorithm had convergence problems especially while using
the pow3 non-linearity.

The results of the ICA algorithms for fMRI data reveal task-
related, transiently task-related, and motion-related sources among
the separated components. MCC values of the two most task-
related components are listed in Table 2. We observe that all the
algorithms do well, with FastICA using the pow3 non-linearity
performing slightly better in terms of closeness to the model time
course. Notice that even though the first MCC value is very high
for AMUSE, the second one is low. Two MCC values ) are listed
for the second task-related component for SIMBEC. These issues
with AMUSE and SIMBEC are discussed later in this section.

Infomax, FastICA, and JADE successfully find task-related
components in the left and right visual hemifields. In Fig. 2. we
display the component from the results of each algorithm which
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Fig. 2. FMRI single slice results (left visual cortex)

contains the left visual cortex activation. Among the components
not displayed some interesting differences are worth noting. We
observed that the spatial extent of the task-related component in
the right visual area is slightly larger for Infomax and FastICA es-
timations as compared to JADE. For the transiently task-related
component the spatial extent is slightly higher in FastICA and
JADE compared to Infomax. The performance of FastICA is sim-
ilar for all three non-linearities, with slightly higher correlation
values for pow3. In Fig. 2, we see that the Z-scores for Infomax
are higher than the other algorithms for the task-related source,
indicating that Infomax achieves a higher contrast to noise ratio.
SIMBEC identifies the two task-related sources in the right
and left hemifields, however it splits the left hemifield task-related
source into two components, one of which is showed in Fig. 2 (d).
AMUSE also finds the two task-related sources but places both in
the same component (Fig. 2 (e)) as seen by the high MCC value of
the most task-related component and low value of the second most
task-related component. This may be because the left and right
activations for the task-related source have similar spectra.

6. DISCUSSION

‘We have compared the performance of the five algorithms for per-
forming BSS/ICA of fMRI data. Based on our results, Infomax
emerged as a reliable choice for the task, followed by JADE as a
close second. FastICA performed reliably for most cases as well
whereas the performance of SIMBEC and AMUSE did not prove
to be robust, different combination of sources and their numbers
seemed to affect the performance significantly. SIMBEC, how-
ever, may prove to be useful to identify the sub-Gaussian sources,
i.e., artifacts in fMRI data as its performance for these sources
has been consistently very good. The performance of AMUSE

is highly dependent on the differentiability of the spectra of the
sources for a given delay and its performance suffers a great deal
when the condition is not met. In our simulations, we observed that
the condition is limiting for fMRI data especially when the number
of sources increase. While our simulations with actual fMRI data
has been useful in highlighting some limitations of certain algo-
rithms, it should be emphasized that the performance evaluation in
this case is limited since no ground truth is available. Evaluation
by using correlation with a time series does not take into account
the fact that ICA is able to bring out characteristics of the brain
function that are not completely predictable.
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