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ABSTRACT

We propose a new method for the extraction of Auditory 

Brainstem Responses (ABRs) from an EEG signal. It is based on 

adaptive filtering of signals in the wavelet domain, where the 

transform used is a nearly shift-invariant Complex Wavelet 

Transform (CWT). We compare our algorithm to two existing 

methods: The first simply consists of bandpass filtering the input 

EEG signal followed by linear averaging. The second method 

uses signal-adaptive filtering in the Fourier domain based on 

phase variance computed at each spectral component of the FFT. 

Realistic models of EEG and ABR are generated for this 

comparison. Results show that the wavelet-based method 

consistently outperforms the other two methods for ABR signals 

with an initial signal-to-noise ratio less than -20 dB. 

1. INTRODUCTION 

Auditory Evoked Potential (AEP) signals are transient electrical 

biosignals produced by various regions of the human brain in 

response to auditory stimuli (such as a periodic repetition of 

“clicks”). These signals are traditionally categorized into: an 

Auditory Brainstem Response (ABR) which occurs during the 

first 11 ms after the stimulus, followed by a Mid-Latency 

cortical Response (MLR) which is typically confined to the next 

70 ms, followed by a slow cortical response which starts at about 

80 ms after the stimulus.

ABR signals have a waveform morphology which typically 

exhibits five waves (peaks) in the 1.5 to 6 ms post-stimulus 

interval [9]. Specific deviations from a “normal” morphology 

can be mapped to specific auditory dysfunctions or specific 

neurological or psychiatric disorders making these signals of 

great interest for clinical diagnostic purposes.

EP signals are typically one order of magnitude smaller 

than the EEG signal. Standard algorithms for the extraction of 

EP signals from the EEG fundamentally rely on bandpass 

filtering the EEG followed by averaging EEG frames (also 

called “epochs”) synchronously with the beginning of each 

stimulus. This method implicitly assumes that the EEG is a 

stationary, zero-mean process and thus, averaging eliminates the 

average EEG and leaves only the average EP. 

We focus here on the extraction of ABR signals. The first 

description of the human ABR was made by Jewett and 

Williston [10] in 1971. Works describing techniques for 

extracting the ABR from the EEG are given in [1, 2, 3, 4, 7, 8, 

9]. Here, we poropose a new algorithm of adaptive filtering in 

the time-frequency domain using a specific Wavelet Transform 

and compare it to traditional ABR extraction in the form of 

bandpass filtering followed by averaging as well as adaptive 

filtering in the Fourier domain [8].  

2. EEG SIGNAL MODELS 

The advantage of developing mathematical models for 

biosignals is that it allows us to objectively compare the 

performance of different algorithms. In this work, we used a 

mathematical model of the EEG (the “noise”), which produces 

signals at seven electrode locations referred to as Fp1, Fp2, F3, 

F4, F7, F8, and Fz. Each EEG signal has a power spectrum 

which is close to that of a real-world EEG, i.e. is proportional to 

(1/f)  , where f is the frequency in Hz. We assumed a sampling 

frequency of 10 kHz, which is sufficient for ABR extraction 

since power spectral estimates of ABR signals show little energy 

at frequencies above 1500 Hz [9]. 

For models of ABR responses, we used typical averaged 

responses taken from [9] over an analysis epoch of either 12 or 

15 ms. These models, referred to respectively as “pa04ABR” 

and “pa07ABR” are shown in Fig. 1, where peaks are labeled by 

roman numerals as per the convention proposed by Jewett in 

[10]. As far as our study, these models can be seen as “ideal” 

(i.e. noise-free) EP responses. A final, “simulated EEG,” 

containing the embedded ideal EP S[n] was obtained by adding 

the ideal signal to each consecutive epoch of the EEG, thereby 

producing a noisy signal E[n]:

E[n] = S[n] + N[n],                            (1) 

where N[n] represents the biological noise contributed by the 

EEG. Note that adding the same ideal signal to each EEG frame 

assumes that there is no latency jitter in the ABR response. 

To measure reconstructed signal quality, we use the signal-

to-noise ratio (SNR). Suppose that a given signal extraction 

method produces an estimate Srec[n] . The measure of distortion 

provided by the SNR, computed in dB, is then:

SNR(S, Srec)  =  10 log10(var(S)/var(S - Srec)),                     (2)

where var(S) indicates the variance (power) of S.

3. TRADITIONAL ABR EXTRACTION 

3.1. Bandpass Filtering and Synchronized Averaging 

The average input SNR (before any averaging or filtering) for 

signals “pa04ABR” and “pa07ABR” is -23.2 dB and -26.6 dB 
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respectively. If signal and noise were sinusoidal signals, these 

values would correspond to ratios of noise amplitude over signal

amplitude of 14 and 21 respectively (using (2)). These numbers 

are typical of actual ABR recordings and demonstrate that ABR 

responses cannot be visually detected from single sweeps of 

EEG.

The traditional way to improve the SNR and thereby extract 

an Evoked Potential signal from the EEG consists of first 

filtering the EEG using a bandpass filter suitably adapted to the 

type of EP of interest, followed by averaging a (possibly large)

number of epochs all synchronized to the beginning of the 

stimulus. For ABR signals, different filter passbands have been 

used, with highpass cutoff frequency in the range 30-300 Hz and 

lowpass cutoff between 1500 Hz and 3000 Hz. For the purpose

of this work, we decided to select a fairly wide passband of 30-

3000 Hz, as recommended by Hall in [9].

Figure 1: Template noise-free ABR signals “pc04ABR” (top) 

and “pc07ABR” (bottom). The vertical axis is in microvolts.

3.2. Optimal Adaptive Filtering in the FFT Domain 

The optimal digital filtering method developed in [8] showed

that denoised “light-average” ABR signals could be obtained by

processing these averages in the Fourier domain. This algorithm

initially segments EEG data into a set of K “trials” or “sub-

averages” of M frames each. We allowed these trials to overlap

by a number of P frames (P < M). For each trial, spectral

analysis is performed using an L-point1 Fast Fourier Transform 

(FFT). The phase variance across trials of each normalized

complex spectral component is computed according to: 

  Var( i) = (1/K) |h

K

j 1

ij - hi|
2,                       (3) 

with

1Since L is chosen to be larger than the frame length N, we

padded the frames by their mean values. 

hij = Hij /|Hij|, and   hi = (1/K) h

K

j 1

ij ,             (4) 

where Hij is the ith complex spectral component of the jth trial, hij

is the normalized spectral component and hi is the mean

normalized component. A low phase variance for any given

spectral component indicates that this component is likely to 

belong to the phase-locked, repeatable EP signal, whereas a high 

phase variance is likely to be due to (random) noise. After 

computing normalized phase variance, a variance threshold

parameter Tn is initialized to zero and is linearly increased until 

the cumulative range of frequencies for which phase variance is 

lower than Tn achieves a fixed minimum frequency range Fmin or 

Tn hits a predetermined maximum value Tmax. This operation is 

performed independently on each available EEG channel. The 

Fourier components selected by the algorithm are restricted to 

lie in the passband of the bandpass filter used for preprocessing. 

The signal is then reconstructed by taking the Inverse Fast

Fourier Transform (IFFT). This type of filtering is adaptive to 

the signal since the signal itself determines the characteristics of 

the filter (defined in the Fourier domain). After the trial phase of 

the algorithm, during which the optimal filter is determined, all

subsequent light averages are filtered in the same fashion. 

4. ADAPTIVE FILTERING IN THE SPACE-FREQUENCY 

DOMAIN USING A COMPLEX WAVELET TRANSFORM 

The standard discrete wavelet transform (DWT) has been shown 

to be useful for a wide range of signal processing applications 

(compression, digital image and video denoising). While the

Fourier Transform is known to produce a uniform tiling of the 

time-frequency plane  with Fourier components that are well-

localized in frequency but not in time, wavelet coefficients 

provide a trade-off in time-frequency localization; high-

frequency wavelets are well localized in time while low-

frequency ones are well localized in frequency. Dyadic wavelet 

analysis corresponds to tiling the time-frequency plane with

“octave” frequency bands. In the one-dimensional case, the

DWT is implemented by a filter bank made of bandpass filters 

whose passbands are [fN/2, fN],  [fN/4, fN/2], [fN/8, fN/4] , etc. 

where fN indicates the Nyquist frequency, i.e. one half of the 

sampling frequency. Wavelet transforms have been successfully

used for denoising as long as the SNR is moderate to high, i.e.

above 10 dB [5, 6]. When the signal is buried in high energy

noise, i.e. with SNR of less than 0 dB, it has been shown by

Causevic et al. [2] that conventional wavelet denoising fails. 

In addition, a drawback of the classical DWT is that it is

not shift-invariant2 [13]. This results in the fact that the energy

distribution between wavelet subbands is sensitive to a small

time shift of the input signal. While this is of little importance

for signal compression applications, it has been surmised that 

this lack of shift invariance might be the reason why wavelets 

have not been used very much for signal analysis [12]. The

Complex Wavelet Transform (CWT), that was recently proposed

2The undecimated form of the dyadic wavelet decomposition 

tree (also referred to as “algorithme à trous”) does not have this 

drawback but its computational complexity and high redundancy

make it unattractive for many signal processing applications. 
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by Kingsbury [11, 12] and introduces redundancy in the system,

overcomes this deficiency of the classical DWT. It has been

successfully used for image denoising as described for example 

in [14, 15]. Perhaps more importantly, unlike real wavelet 

transforms, this complex transform preserves the notion of phase

(and amplitude) of the transform coefficients, thereby making it 

possible to extend the algorithm described in Section 3. 

Figure 2: Behavior of scaling parameter as a function of 

normalized phase variance for two values of T
max

.

Our algorithm uses the Dual-Tree Complex Wavelet

Transform (DCWT) of Selesnick [16] as the invertible transform

in the adaptive filtering method of Fridman et al. The filters for 

this transform were first published by Kingsbury in [12]. In this 

case, the complex transform coefficients have a magnitude and a 

phase as is the case with the FFT. However, since wavelet 

coefficients are well localized in the time-frequency plane,

setting the amplitude of a wavelet coefficient to zero will only

affect a localized region in the time domain, whereas the

equivalent operation in the FFT domain affects the signal over 

the entire frame. The transform size denoted by L was chosen to

be 512 with 8 decomposition levels (scales) so that the low-

resolution subband consisted of 2 coefficients. 

After the CWT of each sub-average (“trial”) is computed,

the phase variance of each normalized wavelet coefficient wi,j is 

computed as it is in [8]. The magnitude of each wavelet

coefficient is selectively scaled according to the phase variance 

of the coefficients at this location across the trials. In our

implementation, this scaling has the form:

w i,j =  i,j.W i,j exp(j  i,j),                       (5) 

where Wi,j and i,j are respectively the magnitude and phase of 

the unprocessed complex ith wavelet coefficient at the jth scale,

and where: 

 i,j = exp(-0.75.(Fij/Tmax)
4 ),                    (6) 

where Fij is the phase variance of coefficient w i,j across the 

trials. The behavior of this scaling parameter as a function of 

normalized phase variance is shown in Fig. 2. We found that this 

scaling was preferable to a “hard threshold”, where it is set to 

zero for anything above Tmax. The parameter Tmax should be a 

decreasing function of the length of the short-term average used

since we expect longer averages to have a higher SNR and

therefore have more coherence across trials.

The performance of the algorithm for the denoising of

auditory brainstem evoked potentials is illustrated in the next 

section.

5.  EXPERIMENTAL RESULTS 

We denote by “BP + AVG” the method consisting of bandpass

filtering followed by linear averaging, by “AFF” the method

consisting of Adaptive Filtering in the Fourier domain and by

“AFW” our new method consisting of Adaptive Filtering in the 

(complex) Wavelet domain. The parameters used in methods

AFF and AFW with averages of length 512, 750 and 1024 are 

listed in Table I. 

Average SNR results obtained for the three algorithms are 

given in Tables II(A-B) and are illustrated in Fig. 3. 

Figure 3: Comparative results of extracted signal quality (in dB)

as a function of average length. 

Note by comparing the entries in Tables II(A) and II(B) the large

absolute differences in SNR, for any same given method and 

parameters, between signals “pa04ABR” and “pa07ABR.” This 

is because the average input SNR for the former signal is 3.4 dB 

higher than for the latter (-23.2 dB vs. -26.6 dB). Furthermore,

we see that the BP + AFW algorithm significantly outperforms

linear averaging in terms of SNR. Average SNR for this method 

is also consistently higher than for than for the FFT-based 

algorithm (BP + AFF).

6. CONCLUSION

In this work, we extended an algorithm for the extraction 

(denoising) of brainstem evoked potentials responses (ABR) by

using a nearly shift-invariant Complex Wavelet Transform

which scales wavelet coefficients based on the phase variance 

across successive subaverages. The performance of the novel 

algorithm was illustrated on two simulated EEG + EP signals 

where the underlying ideal EP signal is known, allowing

objective comparisons of performance across algorithms. The 

wavelet-based algorithm outperforms the traditional bandpass 

filtering followed by averaging as well as a previously published 

FFT-based adaptive filtering algorithm.
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Table I: Algorithm parameters for AFF and AFW methods 

(Top-row: Length of “light average”). 

512 750 1024

AFF K = 8 

Fmin=950 Hz 

Tmax = 0.65 

P = 256 

L = 512 

K = 8 

Fmin=950 Hz 

Tmax = 0.65 

P = 494 

L = 512 

K = 8 

Fmin=950 Hz 

Tmax = 0.65 

P = 768 

 L = 512 

AFW K = 8 

Tmax = 0.25 

P = 256 

L = 512 

K = 8 

Tmax = 0.25 

P = 494 

L = 512 

K = 8 

Tmax = 0.15 

P = 768 

L = 512 

Table II: Comparison of SNR results for 3 EP extraction 

algorithms; SNR values in dB are given as: average (standard 

deviation) of a collection of SNR values over a time span of 1 

minute (4000 epochs). (A) Signal: “pc04ABR” (input SNR: -

23.2 dB; sampling: 10 kHz); bandpass filter: 30-3000 Hz; (B) 

Signal “pc07ABR” (input SNR: -26.6dB).

pc04ABR 512 750 1024

BP + AVG 6.5 (3.2) 7.8 (3.6) 8.8 (3.9) 

BP + AFF 7.4 (3.5) 8.3 (3.7) 9.2 (3.9) 

BP + AFW 8.4 (3.2) 9.1 (3.4) 10.1 (3.8) 

(A)

pc07ABR 512 750 1024

BP + AVG 1.2 (3.1) 2.7 (3.4) 3.6 (3.5) 

BP + AFF 3.5 (2.9) 4.2 (3.0) 4.1 (3.0) 

BP + AFW 4.6 (2.8) 4.7 (2.8) 5.5 (2.9) 

(B)
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