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ABSTRACT

Genetic microarray expression data often contains multiple 

missing values that can significantly affect the performance of 

statistical and machine learning algorithms. This paper presents 

an innovative missing value estimation technique, called 

Collateral Missing Value Estimation (CMVE) which has 

demonstrated superior estimation performance compared with 

the K-Nearest Neighbour (KNN) imputation algorithm, the Least

Square Impute (LSImpute) and Bayesian Principal Component 

Analysis (BPCA) techniques. Experimental results confirm that 

CMVE provides an improvement of 89%, 12% and 10% for the 

BRCA1, BRCA2 and Sporadic ovarian cancer mutations 

respectively compared to the average error rate of KNN, 

LSImpute and BPCA imputation methods, over a range of 

randomly selected missing values. The underlying theory behind 

CMVE also means that it is not restricted to bioinformatics data, 

but can be successfully applied to any correlated data set. 

1. INTRODUCTION

Microarrays are extensively used in the study of many biological 

processes varying from human tumours to yeast sporulation [1], 

with several mathematical, statistical processes and machine 

learning algorithms using such data for diagnosis and drug 

discovery. The most commonly used methods include clustering, 

classification and dimension reduction techniques such as 

Principal Component Analysis (PCA) and Singular Value 

Decomposition (SVD).

Despite wide usage, experimentally obtained microarray 

data frequently contains missing values with up to 90% of the 

genes affected by such missing values [2], which occur due to 

slide scratches, hybridization failures, image corruption or 

simply dust on slides [5]. Previous work has highlighted [3,4] 

that data dimension reduction techniques and machine learning 

algorithms including Support Vector Machines (SVM) and 

neural networks  are affected by missing values in microarray 

data. The problem can be managed in many different ways from 

repeating the experiment which is not feasible for economic 

reasons, through to simply ignoring the samples containing 

missing values, though this often is inappropriate because 

usually there are a very limited numbers of samples available. 

The best solution is to estimate the missing values, but 

unfortunately most systems use zero impute (replace missing 

values by zero) or row average/median (replacement by the 

corresponding row average/median), neither of which exploit the 

correlation of data and result in high estimation errors [1]. 

Current research has demonstrated that if a correlation between 

the data is used then missing value prediction error can be 

reduced significantly [5]. Several methods including K-Nearest

Neighbour (KNN) Impute, Least Square Imputation (LSImpute) 

[5] and Bayesian Principal Component Analysis (BPCA) [7] 

have been used. However, the prediction error produced by these 

methods still affects statistical and machine learning algorithms 

including class prediction, class discovery and gene 

identification algorithms. In these circumstances there is still a 

need to design a method which will provide minimal prediction 

error.

This paper presents a Collimator Missing Value Estimation

(CMVE) technique which combines multiple value matrices for 

particular missing data. Different tests were conducted by 

randomly removing between 1% and 5% of values from the 

BRCA1, BRCA2 and Sporadic mutation microarray data 

(mutations present in ovarian cancer) [6] and then applying 

KNN, LSImpute, BPCA and CMVE to estimate the missing 

values. The Normalized Imputation Root Mean Square (NIRMS) 

error [2] was used to evaluate the performance of each 

estimation technique, with results demonstrating the superior 

performance of CMVE over the range of missing values and 

while it is not as critical as estimation accuracy, particularly 

when related to health care [1,5], the computational complexity 

order of CMVE is exactly the same as for the three algorithms 

mentioned above .

The rest of paper is organized as follows: Section 2 presents 

an overview of the three missing value estimation techniques 

used for comparative purposes, while the new CMVE algorithm 

is formally presented in Section 3. Section 4 analyzes the 

estimation performance of all four imputation methods, with 

some conclusions given in Section 5. 

2. APPLIED MISSING VALUE ESTIMATION 

TECHNIQUES

2.1 K- Nearest Neighbour (KNN) Estimation 

The KNN based method selects genes with expression values 

similar to the gene of interest to impute missing values [1]. In 

order to estimate the missing value YIJ, of gene I and experiment 

J, k genes are selected whose expression vectors are similar to 

genetic expression of I in samples other than J. The similarity 

measure between two expression vectors Y1 and Y2 is defined by 

the reciprocal of the Euclidian distance over the observed 

components in experiment J.

1 21/ Y Y
   (1) 

The missing value is then estimated as the weighted average of 

the corresponding entries in the selected k expression vectors:-
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where
1

k

ii
, is the Euclidean distance and X is the 

input matrix containing gene expressions. (2) and (3) show the 

contribution of each gene is weighted by the similarity of its 

expression to gene I.

KNN based imputation method has no theoretical criteria 

for selecting the best k-values which are empirically determined. 

Also, the Euclidean distance measure is sensitive to outliers, who 

may be present in microarray data, though our research showed 

that log-transformation of the data significantly reduced the 

effects of outliers on gene similarity determination. The choice 

of a small k degraded the performance of the classifier as the 

imputation process overemphasized a few dominant genes in 

estimating the missing values. Conversely, a large 

neighbourhood would include genes that may be significantly 

different from those containing missing values, so degrading the 

estimation process and commensurately the classifier’s 

performance. Our empirical results demonstrated that for small 

datasets, k=10 was most effective confirming the observation in 

[4].

2.2 Least Square Impute 

Least Square Impute (LSImpute) is a regression based missing 

data estimation method which exploits the correlation between 

genes. To estimate the missing value YIJ, of gene I from gene 

expression matrix X containing non-missing values for gene I

and experiment J, firstly the k most correlated genes are selected 

whose expression vectors are similar to gene I from X in 

experiments other than J. The regression method is then used to 

estimate value 1 for YIJ as

1 X   (4) 

where  is the error term for which the variance is minimized 

when least squares (LS) estimating the model (parameters  and 

). In single regression, the estimate of  and gives

y X  and 
xy

xx
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1

1
( )( )

1

n

xy j jj
X X Y Y

n
is the empirical 

covariance between X and Y,
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the empirical variance of X and n the number of samples. Here 

X  and Y  are the means over X1,...,Xn and Y1,...,Yn. Thus the LS 

estimate of a variable Y given a variable X can be written as 

^
2( )

xy

xx

Y Y X X .

2.3 Bayesian Principal Component Analysis based 

Estimation

Bayesian Principal Component Analysis (BPCA) estimates 

missing values Ymiss of data matrix Y using Yobs. The probabilistic 

PCA (PPCA) is calculated using the Bayes theorem and the 

Bayesian estimation calculates posterior distribution of  and X

using:-

( , | )p X Y ( , | ) ( )p Y X p  (5) 

where ( )p  is called the prior distribution which donates a 

priori preference for parameter and X is the input matrix 

containing gene expression samples.

The missing values are estimated using a recursive 

algorithm which works as follows: Bayesian estimation (BE) is 

executed for both model parameter  and Ymiss like expectation 

maximization repetitive algorithm and calculates the posterior 

distributions for  and Ymiss, q( ) and q(Ymiss), by a repetitive 

algorithm as in [7]. Finally, missing values in gene expression 

matrix are imputed using
^

( )miss miss missY Y q Y dY
  (6) 

( ) ( | , )miss miss obs
trueq Y p Y Y   (7)

where  true is the posterior of the missing value. 

3. COLLATERAL MISSING VALUE ESTIMATION 

(CMVE) ALGORITHM 

The CMVE algorithm is based on a concept of multiple parallel 

estimations of missing values. For example, if value YIJ, of gene 

I and sample J is missing and CMVE estimates multiple values 

for it, then based on these values the final value  for YIJ is

estimated. The complete CMVE algorithm is shown in Fig. 1. 

Firstly the diagonal covariance of I is computed together with 

the other gene expressions, where N is the number of genes and I

the gene number with missing value for sample J. Rows are then 

sorted according to their covariance, with the first k-ranked

covariate genes being selected. The reason for using a 

covariance instead of a distance function, as was used by KNN, 

is explained by:

Lemma 1: Distance functions only consider positive 

correlations.

Proof:  If there are two sets  and  which are inversely 

proportional to each other, then the distance d between  and 

will be larger in those sets which are directly proportional to 

each other. Several distance functions are used for KNN, the 

most common being Gaussian which is given by:- 

d     (8) 

which always gives a higher value of d when  is inversely 

proportional to .

Lemma 2: The CMVE algorithm considers both positive and 

negative correlation values. 

Proof: Assume two sets  and  that are inversely proportional, 

so c v 0 ,o  where 

1

1
cov ( )( )

( 1)

k

i iin
 (9) 

From (9), it is clear that if a high correlation exists between the 

gene values (either directly proportional and positively 

correlated values or inversely proportional and negatively 

correlated values) a higher absolute cov value will always be 

generated.

Let 1 be the estimate of YIJ in (4) (Step 4a) using the linear 

regression method in Section 2.2, while Step 4b estimates two 

other sets of missing values 2 and 3. 2 is estimated using:- 
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Similarly value of 3 is computed using:-

1
3

( )
k

T
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k
  (11) 

 and  in (10) and (11) are obtained from the Non Negative 

Least Square (NNLS) method [4]. The aim is to find a linear 

combination of models, that best fit Rk and I. The objective 

function in NNLS is used to minimize the prediction error 0 as:

0, min( )
  (12) 

Linear programming is used to find coefficients which have 

minimum prediction error and residual . The value of 0 in (12) 

is calculated using:- 

0 max( ( . ))kSV R I
  (13) 

where SV are the singular values of the difference vector 

between product Rk and prediction coefficients with the gene 

expression row I containing missing values. The tolerance used 

by the linear programming method to compute vector is:-

max( ( ))kTol k N SV R C
  (14) 

where k = number of predictor genes Rk and C is the number of 

predictor gene samples. Finally, value  for YIJ is computed 

using:-

1 2 3. . .
   (15) 

where the values of ,  and  are set to 0.33 to obtain the 

average of 1, 2 and 3.

Pre Condition:  Gene expression matrix G(R,N) with R

number of genes, N samples, I missing values, index=1

Post Condition: G without any missing values. 

Algorithm:

1- Compute absolute covariance CoV using (9) 

2- Rank genes (rows) based on CoV

3- Select the k most effective rows Rk

4- Use values of Rk  to 

a. Estimate value 1 using (4) 

b. Compute 2 and 3 using (10) and (11) 

5- Compute missing value of I[index] using (15) 

6- Impute estimated value  in (15) and use in future 

predictions

7- Increment index and Repeat Steps 1–6 until all missing 

values of G are estimated

Fig.1: Collateral missing value estimation algorithm

Two further features of CMVE are now discussed which 

underscore the superior performance of this algorithm. 

Lemma 4: Prediction error probability of CMVE will always be 

less than BPCA, LSImpute and KNN. 

Proof: The prediction error probability is directly proportional to 

the number of missing values M [8] for correlated data. Assume 

P1 and P2 are the prediction error probabilities of the 

comparative methods (BPCA, LSImpute and KNN) and CMVE 

respectively, where 1 and 2 are the actual prediction errors such 

that:-

1 1

0

( ) ( )

M

i

P P p M    (16) 

2 2

0

( ) ( )

M

i

P P P i    (17) 

P1 is the summation of the product of prediction error 

probabilities and probability of missing values since the 

comparative methods do not consider estimated values in future 

missing value predictions and such algorithms only consider M

missing values for each prediction. In contrast, CMVE uses 

estimated values for future prediction of missing values so each 

estimate increases the predictor genes to be considered and 

decreasing the prediction probabilities in (17) so:

1 2 2P  < P  such that P 0 when i 0 
            P(i) =0 for i=0

 (18) 

Lemma 5: CMVE always provides a better estimate of missing 

values in the case of transitive gene dependency (Gene 

A B C) than BPCA, LSImpute and KNN. 

Proof: Assume that gene Ga1 is correlated with S1 such that:- 

a1 1 1 b1 b2 bn G  S  such that S  = {G , G ...G }  (19)

Similarly gene Gb1 is correlated with S2 as:-

b1 2 2 c1 c2 cn G  S  such that S  = {G , G ...G }  (20) 

If the values of both Ga1 and Gb1 are missing then Gb1 can be 

predicted using set S2 and then subsequently used to predict Ga1

more accurately using S1 by including Gb1 rather than ignoring it. 

Unlike CMVE, all the aforementioned techniques do not 

consider estimated values in predicting future missing values.
For completeness the computation complexity order of all 

missing values considered is undertaken as follows: 

Lemma 6: Computational complexity order of CMVE is exactly 

the same as for KNN, LSImpute and BPCA algorithms. 

Proof: The critical operation for CMVE, KNN, LSImpute and 

BPCA is to search for the most correlated values. So, CMVE has 

same complexity order as KNN, LSImpute and BPCA. The 

added computation overhead for multiple imputations by CMVE 

is negligible as compared to searching for the most correlated 

genes.

5. DISCUSSION OF RESULTS 

To test different imputation algorithms, microarray data by Amir 

et al [6] was used in all experiments. The data set contained 18, 

16 and 27 samples of BRCA1, BRCA2 and sporadic mutations 

(neither BRCA1 nor BRCA2) respectively. Each data sample 

contained logarithmic microarray data of 6445 genes. The 

missing value estimation techniques were tested by randomly 

removing data values and then computing the estimation error. 

For test purposes, between 1% and 5% of values were removed 

from each dataset samples and the NIRMS errors  computed as: 

)(

( )

estRMS M M

RMS M
  (21) 

where M is the original data matrix and Mest is the estimated 

matrix using KNN, LSImpute, BPCA and CMVE. The 

motivation for using this metric for error estimation is that  =1 

for zero imputation [2]. 
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Fig. 2 to 6 show the NIRMS error for a range of imputes, 

randomly missing values and results prove that CMVE out-

performed all other techniques not only for a small number of 

missing values, but also higher values. For example, the average 

improvement in performance was 94%, 95% and 93 % for 4% 

missing values and 93%, 94% and 92% for 5% missing values 

for the three genetic datasets respectively. This underscores the 

capability of the CMVE algorithm to more effectively estimate 

higher missing values for the reasons detailed in Lemma 4 and 5. 
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Fig. 2: Missing value imputation error for 1% missing values 

Imputation Errors for 2% Missing Values
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Fig. 3: Missing value imputation error for 2% missing values 

Imputation Errors for 3% Missing Vaules
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Fig. 4: Missing value imputation error for 3% missing values 

Imputation Errors for 4% Missing Vaules
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Fig. 5: Missing value imputation error for 4% missing values 

Imputation Errors for 5% Missing Vaules
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Fig. 6: Missing value imputation error for 5% missing values 

6. CONCLUSIONS 

This paper has presented a novel Collateral Missing Value 

Estimation (CMVE) algorithm, whose performance has been 

proven to be superior in terms of error rates, to other commonly 

used techniques including KNN, LSImpute and BPCA. Results 

confirmed that for randomly missing values between 1% and 5% 

on ovarian cancer microarray data, the overall performance 

improvement was on average 89%, 12% and 10% respectively 

for BRCA1, BRCA2 and Sporadic mutation data. CMVE also 

consistently demonstrated better performance for higher 

numbers of missing vales, with no overall increase in the order 

of computational complexity. While analysis has focused upon 

ovarian cancer microarray data, the algorithm’s performance in 

minimizing estimation errors means it can be applied effectively 

to other datasets comprising correlated values. 
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