
SYMBOL-BALANCED QUATERNIONIC PERIODICITY TRANSFORM FOR LATENT
PATTERN DETECTION IN DNA SEQUENCES

Andrzej K. Brodzik and Olivia Peters

The MITRE Corporation, �Bedford MA 01730, McLean VA 22102�

�abrodzik, otate�@mitre.org

ABSTRACT

A new approach towards computing periodicity transform of
DNA sequences is proposed. The approach is based on mapping of
DNA symbols to pure quaternions. The resulting quaternionic pe-
riodicity transform outperforms the previously proposed complex
periodicity transform due to enhanced, symbol-balanced sensitiv-
ity to DNA patterns. The theoretical finding is supported by per-
formance comparison of the two transforms and by an application
example.

1. INTRODUCTION

It has been often observed that the occurrence of repetitive
structures (or tandem repeats) in genomic data is symptomatic of
biological phenomena. Perhaps the best known example of this as-
sociation is the 3-base repetition of codons, which is characteristic
of protein coding regions in DNA sequences of eucaryotic cells.
The 3-base repeat is considered large-scale, as it occurs throughout
the genome, in contrast to small-scale repeats, typically restricted
to individual genes or gene subsets. Other well known large-scale
genomic repeats include the 10.5-base repeats that are due to a
3.5 aminoacid repeat in alpha-helical coiled-coil regions in pro-
teins, and the 200-base and the 400-base repeats that are thought
to have evolved by fusion of genome segments of nearly identi-
cal sizes [18]. Small-scale genomic repeats and repeat changes
in the human genome has been associated, among others, with ge-
netic diseases such as Huntington disease, myotonic dystrophy and
Friedreich ataxia (CTG, CGG and GAA repeats) [3], and with pro-
gression of cancer [14].

Applications of repetitive structures include prediction of gene
and exon locations [11], identification of diseases [3], reconstruc-
tion of human evolutionary history [17], DNA forensics [5], detec-
tion of pathogen exposure [6], and prediction of the relative level
of gene expression [16]. The number of known repetitive struc-
tures and their applications is certain to grow, as repetitions are
estimated to comprise more than one-half of the human genome
[10].

The methods used to detect DNA repeats can be classified as
either probabilistic or deterministic. Among the deterministic ap-
proaches, most rely on spectral analysis of the data, which is typ-
ically based either on Fourier [1], Walsh [16], or wavelet trans-
form processing [2]. More recently, a time-domain method, called
the periodicity transform has been proposed [13] and applied to
genomic feature detection [4]. The periodicity transform enjoys
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several advantages over the spectral methods, perhaps the most
important of which in the context of genomic signal processing is
its superior computational efficiency. One of the disadvantages of
periodicity transform (which it shares with the spectral methods) is
its symbol bias that is inherent in the mapping of DNA symbols to
complex numbers, and which results in missed detections of some
repetitive structures.

In this paper we propose to replace the complex number set
with its algebraic generalization, the set of quaternions [7]. This
replacement results in a periodicity transform that is symbol bal-
anced and that detects all repetitive structures. We anticipate that
the quaternionic approach can be utilized (via the quaternionic
Fourier transform [15]) to improve the spectral methods, and (via
the use of higher dimensional hypercomplex number systems, such
as octonions and sedenions [9]) to facilitate symbolic signal pro-
cessing in applications utilizing larger than genomic alphabet sizes.

2. PERIODICITY TRANSFORM

2.1. Periodicity detection

Take � � �� �� �� � � � ��, and let � be an arbitrary � -
point sequence of real numbers, � � ��� ��� ���� ����. Define the
periodicity transform (PT) [13] by
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Take �� � � �� �� �� � ��� � �� �� � � ��, and �� � �� � �. In
analogy to the short time Fourier transform, define the short time
periodicity transform (STPT) by
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where � � � � � � � �� � � ��� and � � 	 � � . A more robust
indicator of presence of a periodic component in a sequence is
obtained, when the STPT is normalized by the sequence �� -point
segment’s ’power’ and averaged over � shifts, i.e.,
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where � � �� � �� �� . We call this indicator the periodicity de-
tector (PD). Since 


��
� is a � -point sequence, and � in (2) is eval-

uated over an implicit �� -point window, hence the normalization
factor �� �� �. If periodicity of the repetitive component is known
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within some specified range, e.g., �� � � � ��, then PD is com-
puted for all � within that range, i.e., � � �� ���� � �� �� �
� � ��, with ��� ���

����
�� � �� ���� � �� yielding the estimate

of the period and the position of the unknown periodic component.
In the next subsection we will investigate properties of PD of a

symbolic sequence, evaluated at a single shift. In preparation, we
define the single shift PD of a numeric sequence,
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where � � �� � �� ��� � � � � � . Note, that for convenience,
contrary to (4), in (5) normalization is performed over a subset of
values of �, so that � �� � � ���	�� � 
 for all �. As an aside,
we observe that, if

�
� ����� 	 �	 �� ��� �const for all �, then

� � � �� ���� �
�

� � � � ��� 	 ��.

2.2. Periodic symbol detector

Take an arbitrary �� -point DNA sequence, � � ��� ��� 			�
�����, and choose any stride by � � -point decimation of �, e.g.,
�� � ��� �� � 			� ������� . Denote by integers ��� ��� �� and
�	� ��	��	�� 	�	 � � , the count of symbols �
�� ���� ���

and �� in ��. Consider an assignment of DNA symbols to arbitrary
(complex or hypercomplex) numbers, e.g.,
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abstract single shift periodic symbol detector (PSD) of � can then
be expressed as
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where ��� �� �� Æ � �����������������	�� . We require
that � � � ��� �� �� Æ satisfies the following conditions:

1. � � � ��� �� �� Æ has a minimum at �
��� 
��� 
��� 
��.

2. � � � ��� �� �� Æ has a maximum at �
� �� �� �.

3. If � � �� �� Æ then � � � ��	 
��� � � 
��� �� Æ � �
� � ��� �� �� Æ � �.

4. � � � ��� �� �� Æ is invariant under permutation of any
two symbols.

2.3. Complex assignment of DNA symbols

Consider an assignment of DNA symbols to complex numbers
[4], e.g.,
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�� �� �� � ��� �� (8)

The complex PSD can then be expressed by the following formula
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Since
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the complex PSD satisfies conditions 1 and 2. Condition 3, how-
ever, is not met since, for example, � � �� �
�� 	 
��� 
�� �

��� �� 
��� � � �� �
��� 
��� �� 
�� � � for � � �. More-
over, since, e.g.,

� � �� ���	� �� ��	� �� � � (12)

and

� � �� ���	� �� �� ��	� � � (13)

it is readily seen that condition 4 is violated as well. In general, the
complex PSD given by equations (8-9) is variant under exchange
of any two parameters, except for the pairs � and �, and � and Æ.
In fact, no assignment of type (8) leads to a detector meeting all
four conditions of subsection 2.2.

3. THE QUATERNIONIC APPROACH

Real and complex numbers can be viewed as one- and two-
dimensional instances of � -dimensional hypercomplex numbers
of the form

� � 
��� 	 
��� 	 
��� 	 			 	 
� �� � � � �	 � ���� (14)

where 

 � 	� � � � � � , �� � 
 and �
 , � � � � � , are sym-
bols called imaginary units. If � � � then � is real and if � � 

and ��� � �
 then � is complex. The best known hypercom-
plex numbers, apart from the real and the complex numbers, are
the four-dimensional quaternions and the eight-dimensional octo-
nions.

The concept of quaternions was introduced by William Hamil-
ton in 1843 [7], who defined a quaternion as a number of the form

� � 
	 ��	 �� 	 ��� (15)

where 
� �� �� � � 	, and �� �� � are symbols defined by the fol-
lowing set of rules

�� � �� � �� � �
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�� � ��� � �	 (16)


 is called the real, or scalar, part of � and � � 
 is called the
imaginary, or vector, part of �. � � 
 is also known as the pure
quaternion. Quaternions follow the usual addition rule

�	� ��� �� � ��� � �	� � ���� ��� � ���� �

�	 � 	�� � ��� ���� � ��� ���� � �� � ����� (17)
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and a distinct multiplication rule

��� ��� �� � ������ � ���� ��� � ����
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The multiplication is not commutative, i.e., ���� �� ����, which is
due to the relation between imaginary units (16). The quaternion
� � �� ��� �� � �� has a conjugate

�� � � � ��� �� � ��	 (19)

a norm

��� � �
��� �

�
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and an inverse

��� �
��

���� � (21)

Applications of quaternions in signal processing include computer
vision, robotics [15], and color and hyperspectral image process-
ing [12,15]. For an elementary treatment of quaternions, see [9].

3.1. Quaternionic assignment of DNA symbols

Consider the assignment of DNA symbols to pure quaternions,
e.g.,
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The quaternionic PSD can then be expressed by the following for-
mula
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In particular, we have
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From equations (27) and (24) we have that � 	 
� satisfies con-
ditions 1 and 2. To verify condition 3, note that � 	 
� �� �
��� � � ��� �� Æ�� � 	 
� ��� �� �� Æ� � ������� � � �
��� 
 	 if � � �� 
 �. To verify that � 	 
� satisfies
conditions 4, note that the numerator in (23) can be written as
���� � �� � �� � Æ��� 
��� � �� � �Æ � �� � �Æ � �Æ�.

3.2. Performance comparison

We have compared performance curves and surfaces of the
complex and quaternionic detectors in several special cases.

Fig. 1a-1c shows magnitude of complex and quaternionic de-
tectors when either � � 	 or Æ � 	. Symmetry of the quaternionic
detector surface manifests symbol permutation invariance of the
quaternionic detector. Lack of symmetry of the complex detector
surface manifests symbol imbalance of the complex detector.

Fig. 2a-2c shows performance curves of complex and quater-
nionic detectors when four, three or two symbol counts are non-
zero. Of the non-zero symbol counts, all but one are set to the same
value, i.e., in plot a � � � � Æ � ���

�
, in plot b � � � � ���

�
,

and in plot c � � �� �.
The first plot shows that for � � � � Æ � ���

�
the per-

formance of the complex and quaternionic detectors is identical.
The second plot (three symbol counts are non-zero) shows that
the complex detector performance differs from the quaternionic
detector performance, and that the complex detector performance
depends on symbol selection. The solid line in Fig. 2b corresponds
to the � � � � � � 
� � � � � line in Fig. 1a, and the dashed
line in Fig. 2b corresponds to the � � � � Æ � 
� � � � �
line in Fig. 1b. The two complex detectors coincide at points
� � ��� and � � �. At point � � 	, the two complex detec-
tors differ by ��
, i.e., � 	 
� �	� ��
� ��
� 	� � 	 and � 	 
�

�	� ��
� 	� ��
� � ��
, and at point � � ��
 the two complex
detectors differ by ���, i.e., � 	 
� ���
� ���� ���� 	� � ���
and � 	 
� ���
� ���� 	� ���� � ���. The point �	� 	� marks
occurrence of the ’ccgg’ string and the point �	� ��
� marks occur-
rence of the ’cctt’ string. The point ���
� ���� marks occurrence
of the ’aacg’ string and the point ���
� ���� marks occurrence
of the ’aact’ string. The third plot (two symbol counts are non-
zero) demonstrates different dynamic range of the quaternionic
and the two complex detectors, i.e., � 	 
� ��� 	� 	� 	�� � 	 
�

���
� ��
� 	� 	� �� 	 
� ��� 	� 	� 	�� � 	 
� ���
� 	� 	� ��
� �

��, � 	 
� ��� 	� 	� 	�� � 	 
� ���
� 	� 	� ��
� � �, and
� 	 
� ��� 	� 	� 	� � � 	 
� ���
� ��
� 	� 	� � ��
.

Comparison of the quaternionic detector curves in plots a-c il-
lustrates increase in the value of the quaternionic detector (points
����� 	�, ����� ����, ���
� ����), as the number of non-zero sym-
bol counts decreases.

Fig. 3 illustrates results of performing complex and quater-
nionic short time periodicity transform on a random pseudo-DNA
sequence with two embedded patterns: �������������

� and �������
������

�. The first pattern contains dominant symbols ’g’ and ’t’,
the second pattern contains dominant symbols ’c’ and ’g’, the pe-
riodic content of the two patterns however is identical. Application
of the complex detector to the sequence results in detection of the
second pattern only; application of the quaternionic detector re-
veals presence of both patterns.

4. SUMMARY

We have shown that the quaternionic mapping of DNA sym-
bols results in a superior performance of the periodicity transform.
We conjecture that an even greater benefit can be derived by em-
ploying the quaternionic Fourier transform in the spectral domain
approach to DNA pattern detection.
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Fig. 1. Performance surfaces of complex and quaternionic detec-
tors: 1)� � �� ��� �� ������ ��, 2)� � �� ��� �� �� ������

and 3) � � �� ��� �� ������ ��= � � �� ��� �� �� ������.
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Fig. 2. Performance curves of complex and quaternionic de-
tectors for the following symbol counts: 1) ��� ���
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��� �� �� � � ��, The values of � � �� (solid and dashed lines)
and � � �� (dotted line) are plotted against the count of symbol
’a’, �.
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