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ABSTRACT

Many biological functions are executed as a module of co-
expressed genes which can be conveniently viewed as a co-
expression network. Genes are network vertices and sig-
nificant pairwise co-expressions are network edges. Tra-
ditional network discovery methods controls either statis-
tical significance or biological significance, but not both.
We have designed and implemented a two-stage algorithm
that controls both statistical significance (False Discovery
Rate, FDR) and biological significance (Minimium Accept-
able Strength, MAS) of the discovered network. Based on
the estimation of pairwise gene profile correlation, the al-
gorithm provides an initial network discovery that controls
only FDR, which is then followed by a second network dis-
covery which controls both FDR and MAS. We illustrate the
algorithm for discovery of co-expression networks for yeast
galactose metabolism with controlled FDR and MAS.

1. INTRODUCTION

Microarray gene expression data enable researchers to inter-
rogate gene expression levels simultaneously on the genome
scale. Detection of co-expressed genes from microarray
data has attracted much attention since many co-expressed
genes are found to have functional relationships, e.g. ly-
ing in the same signal transduction pathway. Many co-
expression detection techniques such as relevance network
and hierarchical clustering rely on the quantitative or qual-
itive assessment of similarities between the expression pro-
files of gene pairs, which is one of the fundamental objec-
tives in functional genomics and system biology. Tradi-
tional methods either screen statistically significant or bi-
ologically significant co-expressed gene pairs. The former
does not control error rate, and the latter leads to screening-
in some weakly correlated gene pairs that are difficult to
verify by follow-up experiments such as real time RT-PCR.

In this paper, we present a two-stage algorithm that si-
multaneously controls statistical and biological significance
of the discovered co-expression network. The algorithm im-
plements Pearson correlation coefficients and Kendall cor-
relation coefficients in order to capture both linear and non-

linear types of dependencies between all pairs of gene ex-
pression profiles. A two-stage error control procedure is
then implemented through which a number of gene pairs
are declared to be both statistically and biologically signif-
icant as measured by FDR and MAS of association. These
gene pairs form the edges of the relevance network that rep-
resents the complicated web of gene co-expression among
all pairs of genes.

We demonstrate the application of our two-stage algo-
rithm by constructing relevance networks from yeast galac-
tose metabolism data [1]. This data represents approxi-
mately 6200 gene expression levels on two-color cDNA mi-
croarrays over 20 physiological/genetic conditions (nine mu-
tants and one wild type strains incubated in either GAL-
inducing or non-inducingmedia) with four replicates in each
condition.

The paper is organized into five parts: Introduction of
Kendall and Pearson statistics for strength of association
(Sec. 2); Formulation of the problem of network discov-
ery as a composite hypothesis test with multiple compar-
isons (Sec 3); Introduction of two-stage procedure for test-
ing these hypotheses (Sec 4); Validation of the two-stage
algorithm and application to yeast data (Sec 5).

2. MEASURING THE STRENGTH OF
ASSOCIATION

We use Γ to denote the true strength of association between
a pair of gene expression profiles. Under a Gaussian lin-
ear hypothesis, the sample Pearson correlation coefficient ρ̂
is an appropriate metric. A robust distribution-free alterna-
tive is the sample Kendall rank correlation coefficient τ̂ [2].
The Pearson and Kendall correlation coefficients are spe-
cial cases of the generalized correlation coefficient Γ. We
define {gp}G

p=1 as the indices of G gene probes on the mi-
croarray; {Xgp}G

p=1 as normalized probe responses (ran-
dom variables); and {{xgp(n)}G

p=1}N
n=1 as realizations of

{Xgp}G
p=1 under N i.i.d. microarray experiments.

Kendall’s τ statistic is a measure of correlation that cap-
tures both linear and non-linear associations[2]. The τ is
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defined as: τ = P+ − P−, where, for any two indepen-
dent pairs of observations (xgi(n) , xgj(n)), (xgi(m) , xgj(m) )
from the population: P+ = P [(xgi(n) − xgi(m))(xgj(n) −
xgj(m) ) > 0] and P− = P [(xgi(n) −xgi(m))(xgj(n) −xgj(m))
< 0]. An unbiased estimator of τ is given by the Kendall τ

statistic: τ̂ = 2
∑∑

1≤i≤j≤N
Kij

N(N−1) . Here Kij is a indi-
cator variable defined as Kij = sgn(xgi(n) − xgi(m))sgn
(xgj(n) − xgj(m) ) for each set of pairs {Xgi}G

i=1, {Xgj}G
j=1

of sample observations.
To make the estimated correlation robust against spuri-

ous outliers yet sensitive to strong similarities in expression
patterns, we adopted a leave-one-out cross-validation tech-
nique, using the median estimate as a robust estimator of the
correlation.

3. HYPOTHESIS TESTING SCHEME

For G genes on each microarray, we need to simultaneously
test G =

(
G
2

)
pairs of two-sided hypotheses:

H0 : Γgi,gj ≤ cormin versus Hα : Γgi,gj > cormin,

for gi �= gj , and gi, gj ∈ (1, 2, ...G) (1)

where cormin is a minimium acceptable strength of corre-
lation. The sample correlation coefficient Γ̂ (ρ̂ or τ̂ ) is used
as a decision statistic to decide on pairwise dependency of
two genes in the sample. For N realizations of any pair of
gene probe responses, (xgi(n), xgj(n)), we first calculate τ̂
or ρ̂. For large N , the Per Comparison Error Rate (PCER)
p-values for ρ or τ are:

pρ = 2(1 − Φ(
tanh−1(ρ̂)

(N − 3)−1/2
))

pτ = 2(1 − Φ(
K

N(N − 1)(2N + 5)/181/2
))

whrere Φ is the standard Gaussian cumulative density func-
tion, and K =

∑∑
1≤i≤j≤N Kij . The above expressions

are based on asymptotic Gaussian approximations[2].
The PCER p-value refers to the probability of Type I er-

ror rate incurred in testing a single pair of hypothesis for a
single pair of genes gi, gj . It is the probability that purely
random effects would have caused gi, gj to be erroneously
selected based on observing correlation between this pair of
genes only. When considering the G multiple hypotheses for
all possible pairs, two adjusted error rates have frequently
been considered in microarray studies. These are family-
wise error rate (FWER) and false discovery rate (FDR). The
FWER is the probability that the test of all G pairs of hy-
potheses yields at least one false positive in the set of de-
clared positive responses. In contrast, the FDR is the aver-
age proportion of false positives in the set of declared posi-
tive responses. The FDR is dominated by the FWER and is

therefore a less stringent measure of significance. As in pre-
vious studies, we adopt the FDR to control statistical signif-
icance of the selected gene pair correlations in our screening
procedure[3].

4. TWO-STAGE SCREENING PROCEDURE

Select a level α of FDR and a level cormin of MAS sig-
nificance levels. We use a modified version of the two-stage
screening procedure applied to gene screening [3]. This pro-
cedure consists of:

Stage I. Test the simple null hypothesis.

H0 : Γgi,gj = 0 versus Hα : Γgi,gj �= 0

at FDR level α. The step-down procedure of Benjamini and
Hochberg [4] is used.

Stage II. Suppose G1 pairs of genes pass the stage I
procedure. In stage II, we first construct asymptotic PCER
Confidence Intervals (PCER-CI’s) :Ig(α) for each Γ (ρ or
τ ) in subset G1, and convert into FDR Confidence Intervals
(FDR-CI’s) :Ig(G1α/G)[5]. A gene pair in subset G1 is
declared to be both statistically significant and biologically
significant if its FDR-CI does not intersect the MAS interval
[−cormin, cormin] (see Fig 3).
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Fig. 1. Verification of null sampling distribution (a) and variance
approximation (b). (a) QQ plot of transformed sampling distribu-
tion of Pearson correlation coefficient versus normal distribution.
(b) Variance approximation of transformed sampling distribution
of Pearson correlation coefficient.

5. VALIDATION OF TWO-STAGE ALGORITHM

5.1. Validating asymptotic null distribution

Here we verify that the two-stage algorithm controls FDR
at a specified MAS level using simulated data. Since the p-
values are based on asymptotic distribution approximations,
we verify in Fig 1 that the sampling distribution is Gaussian
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distributed using QQ plot. Moreover, since the construc-
tion of confidence intervals requires estimation of sampling
distribution variance, the accuracy of variance approxima-
tion is vital, which can be accessed by calculating squared
error:(s.e. denotes standard error, and FX denotes sampling
distribution)

σ̂ρ = (s.e.(tanh−1(Fρ̂)) − (N − 3)−1/2)2

σ̂τ = (s.e.(Fτ̂ )−(
2

N(N − 1)
2(N − 2)

N(N − 1)2

N∑

i=1

(Ci−C)+1−τ̂))2

Fig1b shows that the variance of sampling distribution is
close to its approximation value even for small sample size
(N < 20).

5.2. Validating error control procedure

In order to validate our FDR and MAS error control pro-
cedure, we simulated pairwise gene expression data based
on pre-specified population covariances. The actual FDR
at a MAS level is calculated as a ratio of the number of
screened gene pairs whose corresponding population corre-
lation parameters Γ’s are less than the MAS level specified,
divided by the total number of screened gene pairs. The ac-
tual MAS is the minimium discovered population correla-
tion Γ among the screened pairs. We pre-specified 16 pairs
of (FDR,MAS) criteria (Four FDR levels: 0.2, 0.4, 0.6, 0.8;
Four MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted as a
different point character (red) in Fig 2. The 16 correspond-
ing pairs of actual (FDR,MAS) criteria are also shown in Fig
2 using the same set of point characters (Blue). It can be ob-
served that the actual FDR’s (blue points) fall below the pre-
specified constraint (red points) and the actual MAS’s (blue
points) fall above the pre-specified constraint (red points).
The deviations of actual FDR’s and MAS’s from their pre-
specified levels are due to the conservative asymptotic ap-
proximation. This will translate into a reduction of power
in discovering co-expressed pairs at the specified levels.

6. CONSTRUCTING A RELEVANCE NETWORK
WITH CONTROLLED FDR AND MAS

Relevance networks are implemented as a graph where n
nodes (genes) are connected by p sets of edges (co-express
ions). Each of the p edges represents the similarity measure
between pairs of nodes[6].

For the yeast galactose metabolism dataset, a subset of
997 genes were identified by Ideker et al using generalized
likelihood ratio test [1]. Genes having a likelihood statistic
λ ≤ 45 were selected as differentially expressed, whose
mRNA levels differed significantly from reference under
one or more perturbations. We used the average expression
profiles over four replicates for subsequent analysis, which
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Fig. 2. Verification of two-stage error control procedure based on
Pearson correlation coefficient(a) and Kendall correlation coeffi-
cient(b). Sample size N = 20.

implicitly assumes that the between-replicates variances for
a gene over different experimental conditions are equal.
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Fig. 3. Segments of lower bounds (a) and upper bounds (b) speci-
fying the 5% FDR-CI’s on the positive Pearson correlation coeffi-
cients (a) and negative Pearson correlation coefficients (b) for the
galactose metabolism study. Only those gene pairs whose FDR-
CI’s do not intersect [−cormin, cormin] are selected by the sec-
ond stage of screening. When the MAS strength of association cri-
terion is cormin = 0.5, these gene pairs are obtained by thresh-
olding the curves as indicated.

Fig 3a and Fig3b illustrate the direct implementation of
the two-stage procedure to screen positively or negatively
correlated gene pairs based on the Pearson correlation co-
efficient. See [3] for more details on how to intepret these
plots. The direct screening procedure is constrained by FDR
criterion α = 0.05 and MAS criterion cormin = 0.5.

Fig 4 presents the discovered network topology with a
FDR level of 0.05 (5% discovered edges are expected to be
false positive) at the MAS level of 0.9 (cormin = 0.9).
The network is composed of 91 connected vertices and 138
edges. Similiar to some other biological networks, the net-
work marginal degrees appear power-law distributed, which
is tested by verifying goodness of fit to the log-transformed
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Fig. 4. Network topology visualization. The network is discovered
by constraining FDR ≤ 5% at a MAS level of 0.9. No significant
negative correlation is discovered at this level. The graph is drawn
using Pajek [9].

power-law model, (goodness of fit criterion R2 = 0.95) i.e.,
log P (Ki) = −γ log Ki + log α + εi, (i = 1, 2, , n), here γ
and α are parameters, εi is a residual fitting error. Ki is the
degree and P (Ki) is the corresponding probability.

Genes that are of considerable interest to the biologist
are the highly connected genes that dominates the network
topology. These are called ”hub genes”, such as RPL33A
and RPS4A in Fig 4 and are minimally sensitive to the net-
work discovery criteria. Most of the ”hub genes” in each
discovered network fall into two categories: ”RPL” and ”RP
S”. The former encodes ”Ribosome Protein Large (60S)
subunit,” and the latter encodes ”Ribosome Protein Small
(40S) subunit”. Both of which are structural components
of the ribosome that is responsible for protein biosynthe-
sis. Protein biosynthesis plays the central role in galac-
tose metabolism because galactose is not a primary car-
bon source for yeast, and different types of proteins includ-
ing transporters, enzymes, and regulators have to be syn-
thesized upon induction [7]. Interestingly, the list of ”hub
genes” contains many hypothetical Open Reading Frames
(ORFs)(data not shown), which are presumably indispens-
able for galactose metabolism [8].

7. CONCLUSION

We have introduced a method to construct gene co-expressio
n networks with controlled FDR at different levels of MAS.
By replacing correlation coefficient with partial correlation
coefficient, the method can be naturally extended to the Gaus-
sian Graphic Model framework.

Table 1. Top ten ”hub genes”. The rank of each gene is the av-
erage rank over five networks. Each of five networks is constraint
by a different pair of (FDR,MAS) criteria. Highest rank is the
most connected and most stable gene under varying constraints of
(FDR,MAS)

Gene Name Average Rank

RPL42B 4.2
RPS3 5.8
RPL14A 7.0
RPS16B 7.6
GTT2 8.4
RPS4A 9.8
RPL33A 11.8
RPL23B 15.8
RPS7A 16
RPL27A 17.4
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