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ABSTRACT

In this paper, a novel general paradigm for text detection
using support vector machine (SVM) is proposed. Unlike
prevailing techniques in the literature, our adaptive SVM
incorporates information from each input image. In addi-
tion, for better classification results and higher efficiency, a
novel kernel called the Fréchet Kernel is presented for SVM
classification. The adaptive SVM aims to serve as a general
paradigm to improve the prevailing techniques. In the ex-
periment, we apply the paradigm to a simple algorithm and
successfully obtain a new competitive method for text de-
tection.

1. INTRODUCTION

Recent developments in acquisition and storage technology
facilitate large collections of digital images and videos. It
remains an active research area to effectively and efficiently
index and retrieve information from multimedia database.
Due to the characteristics of text in image and video, such
as low resolution and high complexity of background, it is
still a challenging problem to accurately detect regions that
contain text and yet keep the false alarm to a minimum.

To date, techniques in video text detection can be broadly
categorized into three major groups [1]: learning-based, con-
nected component-based, and texture-based methods. Learn-
ing based approaches adopt modern machine learning tech-
niques, such as support vector machine (SVM) and neural
network (NN) learning, for text and non-text block classifi-
cation. Connected component-based approaches apply con-
nected component analysis to the image and non-text is then
filtered by geometric properties. Texture-based approaches
view video text as regions that are composed of special tex-
ture patterns. Some low level image features such as edge
gradients and corners are utilized to model and detect tex-
tual patterns. Despite numerous techniques in the literature,
there is little work on designing methods which can serve as
general paradigms to improve other techniques.

In this paper, such a paradigm is presented and it uses
the support vector machine (SVM) technique. Unlike the
prevailing methods in the literature, our SVM incorporates
information from the input image. In addition, for better
classification results as well as higher efficiency, a novel
kernel called the Fréchet Kernel is presented for SVM clas-
sification. Our general paradigm of image specific SVM
aims to improve numerous prevailing techniques in signif-
icantly increasing the detection rate while introducing only
slightly more false alarm. In the experiment, we apply the
paradigm to a simple toy algorithm and obtain a new com-
petitive method for text detection.

2. ADAPTIVE SVM PARADIGM

Applying SVM for text detection is not a new idea - there
are successful studies in the literature such as [2, 3, 4]. Loosely
speaking, all of such methods use the SVM in the way that
an SVM is first trained through using some blocks collected
from a general set of images in two (i.e., text and non-text)
categories, then the blocks from input images are classified
by the trained SVM. Due to the excellence of SVM in clas-
sifying similar but different data, this type of approaches
usually lead to high detection rate. The main drawback is
that the false detection rate is usually high if no postpro-
cessing techniques are further applied, refer to [2]. Clearly,
to depress the false alarm while keeping the very high de-
tection ratio is critical.

Unlike our SVM-based alternatives, we try to incorpo-
rate the image specific information into an SVM so as to
make the SVM especially good at classifying blocks of the
very image. To this effect, we could first apply a generic
SVM trained by general image data, then select some re-
sulting text and non-text blocks, and some general training
data, to train a new SVM. With this adaptive SVM, we can
generally achieve higher detection rate, however, false rate
may be even higher. Therefore, it is more useful to apply our
paradigm to improve the detection rate of an algorithm with
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low false rate. We explore this idea and obtain some inspir-
ing results, refer to Section 4. The details of our paradigm
are elaborated as follows.

Note that an adaptive SVM corresponds to exactly one
image. We first place a grid on an image processed by any
prevailing method with low false rate and partition it into
small fixed-size blocks (of size 10 × 10 in our experiment).
The training blocks for the image are then selected such that
p percent of the featured blocks come directly from the par-
titioned image, while others are from the general training
data. In addition, the multi-resolution strategy is explored,
that is, training blocks are first normalized to a fixed size,
then classification is carried out at different scales which en-
ables detecting a variety of font sizes. Refer to Section 4 for
details. For each image, we are ready to train the SVM and
then classify the blocks of that image. In this way, the clas-
sification results can be improved since the new customized
SVM incorporates some image specific information as well
as general image information.

The SVM exploited in this paper is not a conventional
one. Although SVMs have become a very successful dis-
criminative approaches to pattern classification, the straight-
forward application of it to large sequence of vectors is of-
ten ineffective or inefficient [5]. As is well known, much
of classification power of SVM lies in the choice of ker-
nels and actually the study of kernels has attracted lots of
research attention recently. Standard kernels such as linear
and Gaussian kernels do not make full use of information
from image data [5]. Therefore, a lot of new kernels have
been proposed in the literature such as [6, 5, 7]. Some of the
kernels have been successfully applied to image processing
and shown to be superior to standard kernels [5]. In this pa-
per, we propose a novel kernel, the Fréchet Distance based
Kernel (or Fréchet Kernel in short), which can be viewed
as an improved version of the Kullback-Leibler divergence
based kernel originally proposed in [5], for SVM classifica-
tion. The purpose for proposing the Fréchet kernel is mainly
for high efficiency, since we need to train an SVM for each
image, which is time consuming.

3. FRÉCHET DISTANCE BASED KERNEL

The new kernel proceeds in the same way as [5]: we start
with estimating the parameters θi of a PDF for each image
X = {x1, x2, . . . , xm}. After p(x|θ) is estimated, the ker-
nel computation is reduced from the original sequence space
to the PDF space: K(Xi, Xj) → K(p(x|θi), p(x|θj)). We
are to map the input space Xi to a new feature space θi. [5]
uses the symmetric Kullback-Leibler divergence to define
the kernel distance in the new feature space, however, this
type of distance is not scalable and computationally expen-
sive (see [5]). We adopt a more scalable and efficient metric
in this paper, namely, the Fréchet distance. Before com-

puting the Fréchet distance, we need to first discretize the
distribution curves. Evidently, the distance is scalable by
discretizing a curve to different fine scales. Now it remains
to present an efficient algorithm for computing the Fréchet
distance.

The study of computing standard Fréchet distance, which
is considered to be better than the well-known Hausdroff
distance, can be found in [8]. They are able to compute
the Fréchet distance between two polygonal curves in time
O(pq log pq), where p and q are the number of segments on
the polygonal curves. However, since they use the paramet-
ric search technique, the algorithm is too involved and not
practical. Therefore, in this paper, we consider the “cou-
pling Fréchet distance” [8] which is a good approximation
to the standard Fréchet distance and can be computed in
O(pq) time by a very simple algorithm in [8]. For com-
pleteness, we include the details in [8] as follows.

Following [8], define a curve as a continuous mapping
f : [a, b] → V , where a, b ∈ R and a ≤ b and (V, d) forms
a metric space. Given p(x|θi) : [a, b] → V and p(x|θj) :
[a′, b′] → V , the Fréchet distance between them is defined
in [8] as

DF (p(x|θi), p(x|θj)) = inft∈[0,1] max d(p(x|θi)(α(t)),
p(x|θj)(β(t)))

where α and β are two arbitrary continuous nondecreas-
ing functions from [0, 1] onto [a, b] and [a′, b′], respectively.
For practical purpose, we need to approximate a curve by
a polygonal one to approximate the Fréchet distance be-
tween two arbitrary curves. A “polygonal curve” [8] is de-
fined as a curve P : [0, n] → V , where n is a positive
integer, such that for each i ∈ {0, . . . , n − 1}, the restric-
tion of P to the interval [i, i + 1] is affine. We denote the
sequence (P (0), . . . , P (n)) of endpoints of the line seg-
ment of P by σ(P ). Let P and Q be polygonal curves
and σ(P ) = (u1, . . . , up) and σ(Q) = (v1, . . . , vq) be the
corresponding sequences. A “coupling” [8] L between P
and Q is a sequence (ua1 , vb1), . . . , (uam

, vbm
) of distinct

pairs from σ(P ) × σ(Q) such that a1 = 1, b1 = 1, am =
p, bm = q, and for all i = 1, . . . , q, we have ai+1 = ai

or ai+1 = ai + 1, and bi+1 = bi or bi+1 = bi + 1.
We denote by |L| the length of the longest link in L, i.e.,
|L| = maxi=1,...,m d(uai

, vbi
). Given polygonal curves P

and Q, their coupling Fréchet distance is defined as [8]

DcF = min{|L| | L is a coupling between P and Q}

Since a coupling with maximal edge r gives a way of walk-
ing around P and Q with leash at most r, one easily sees
DF (P,Q) ≤ DcF (P,Q), that is, the coupling Fréchet dis-
tance is an upper bound for the standard Fréchet distance
(see [8]). The main advantage of the coupling measure is
that we do not need to carry out parametric search paradigm
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and the measure can be efficiently computed by a simple al-
gorithm proposed in [8] as follows. We take two polygonal
curves P = (u1, . . . , up) and Q = (v1, . . . , vq) as input
and compute the coupling Fréchet measure between them.
In the algorithm, we first initialize (all elements of) a p × q
matrix CA to −1, then call the following recursive function
with parameters p and q.

1. Function recursive coupling (i, j) [8]
2. if CA(i, j) > -1 then return CA(i, j)
3. CA(i, j)= ∞
4. if i = 1 and j = 1 then CA(i, j)= d(u1, v1)
5. if i > 1 and j = 1 then CA(i, j)= max{c(i−1, 1), d(ui, v1)}
6. if i = 1 and j > 1 then

CA(i, j)= max{c(1, j − 1), d(u1, vj)}
7. if i > 1 and j > 1 then CA(i, j)= max{min(c(i − 1, j),

c(i − 1, j − 1), c(i, j − 1), d(ui, vj))}
8. return CA(i, j)
A straightforward analysis of the above algorithm gives

the running time O(pq).

4. EXPERIMENTAL RESULTS

We first apply the general SVM to the image set. We then
train the image specific SVM by information from the re-
sulting image as discussed in Section 2. p is set to 0.5 in our
experiment. We have one SVM per image and each image is
then classified by the customized SVM. However, we found
out that the detection rate is raised but the false detection
is also raised (Refer to Table 1, adaptive SVM after SVM).
Therefore, simply applying the paradigm to a method with
high false alarm (e.g., the general SVM method in our case)
might not produce good results, provided no postprocessing
techniques such as the one used in [2] is applied.

We now apply the general paradigm to a toy text de-
tection algorithm which is a simplified version of the de-
tection algorithm investigated in [9] and has a median de-
tection rate and a low false detection rate. Applying our
general paradigm largely increases the detection rate while
only slightly increases the false detection rate. Refer to Fig-
ure 1, where the results by the general SVM are also shown
for comparison. The detection rate and false rate for the toy
algorithm, general SVM and adaptive SVM are summarized
in Table 1. Clearly, by just applying our general paradigm
to the simple toy, we have already obtained a competitive
method for text detection. Furthermore, the adaptive SVM
is capable of detecting text under a variety of environments,
such as complex backgrounds as well as simple background
but with text of different fonts.

For completeness, we include here a brief description of
the toy program, which has a low false rate. The toy first
computes for each pixel a measure called MGD (Maximum
Gradient Difference) [9], which is the maximum difference
of horizontal gradients in a 1 × 20 window. Text regions
usually have higher MGD values than non-text regions. The

Table 1. Comparison of detection rate and false rate by the
toy, general SVM and adaptive SVM.

Detection rate False rate
Toy 67.5% 1.2%

General SVM 96.5% 85.7%
Adaptive SVM after SVM 99.1% 113.5%
Adaptive SVM after Toy 96.3% 4.9%

Method in [9] 93.6% 3.5%

Table 2. Comparison of running time by using standard
RBF kernel based SVM and the Fréchet Kernel based SVM.

Time per image (sec)
RBF kernel based SVM 28.9

Fréchet kernel based SVM 12.8

MGD values is then thresholded with the value 130, which
is experimentally determined to depress false alarms. On
the thresholded high MGD pixels, connected component
analysis is applied and those regions that have inappropriate
geometrical properties are removed. Note that our purpose
is to decrease as much false detection rate as possible, so
the criteria for the filtering process is quite strict yet simple.
The further details of the toy are omitted due to space limi-
tation. Refer to Table 1 for its detection rate as well as the
false rate. Note that we also compare the new method to the
one proposed in [9] where MGD is fully explored.

Recall that we need one SVM per image. Training so
many SVMs is a time-consuming task. However, due to the
proposed efficient Fréchet Kernel based SVM, we are able
to complete the task within considerably shorter time. As
indicated in Table 2, applying our Fréchet kernel doubles
the speed of the common kernel.

Finally, it is worth reminding readers that our paradigm
explores the multi-resolution strategy. Let us make a few
comments on it. In the case of a big font size and a small
block size, the block close to the true stroke is usually iden-
tified by the toy as a text block, which is reasonable. Then, if
such blocks are chosen as text training blocks, we will have
some wrong training data for SVM. The consequence is the
misclassification of some non-text blocks to text blocks (re-
fer to the red cloud in Figure 2 (a)), and thus false rate is
increased. To solve this problem, we resort to the multi-
resolution strategy, i.e., we first normalize the training data
to a fixed size so as to ensure that every training block cap-
tures the essential property of text. In the testing phase,
SVM is applied at various scales of the test image to ensure
that text of various fonts can be detected. Further details are
omitted here due to space limitation. Refer to Figure 2 (b)
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Fig. 1. Indexed from left to right and from top to bottom,
the first six images are the detection results produced by the
toy, general SVM and adaptive SVM after toy. The last two
images are produced by general SVM and adaptive SVM
after toy.

for the detection result with multi-resolution strategy.

5. CONCLUSIONS

The main contribution of this paper is two-fold. First, we
propose a new SVM based paradigm for improving the pre-
vailing text detection techniques. Second, we propose a
new computationally efficient kernel, which works espe-
cially well for SVM classification in image processing. The
experimental results are encouraging: applying the paradigm
to a simple toy gives us a new competitive technique for text
detection. The future work is to apply the paradigm to other
prevailing techniques.
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