
EXTENDING GENETIC PROGRAMMING FOR MULTI-CLASS CLASSIFICATION BY
COMBINING K-NEAREST NEIGHBOR

Liang Zhang, Lindsay B. Jack and Asoke K. Nandi, Senior Member, IEEE

Signal Processing and Communications Group,
Department of Electrical Engineering and Electronics,

The University of Liverpool, Brownlow Hill, Liverpool L69 3GJ, UK.
liang@liv.ac.uk

ABSTRACT

Genetic programming has seldom been used for multi-class

classification purposes. Previously, it was achieved by sepa-

rating the output manually for different classes or expanding

an n-class problem to n two-class problems. In this paper,

we present a new approach to solving multi-class problem

by using genetic programming for feature generation, and

applying the K-nearest neighbor as a classifier. The results

are comparable with other classifiers.

1. INTRODUCTION

Genetic Programming (GP) has been increasingly applied in

pattern recognition scenarios, where GP is particularly suit-

able for binary classification, because of its single output

structure. The division between negative and non-negative

numbers acts as a natural boundary for a distinction between

the two classes. Zhang et al. [1] extended GP for multi-class

classification purpose by setting different thresholds on the

output for different classes. However, the thresholds, which

are set by the user, are problem-dependent, hence optimised

thresholds are difficult to find; furthermore, for some prob-

lems, some classes are easier to map to different segments

of the output because of the nature of the problem. There-

fore, there is a need to automatically define the area for each

class. Another approach to multi-class classification using

GP was explored by Kishore et al. [2] and Muni et al. [3].

They modeled an n-class problem as n two-class problems,

and each GP classifier is evolved as a discriminant function

for a class. This method is applicable when the problem has

only a few classes. However, when there are many classes,

this approach will expand the problem drastically, and much

more time will have to be spent in training.

The K-Nearest Neighbors (KNN) algorithm is one of

the simplest pattern recognition approaches, which itself is

a multi-class classifier [4]. We apply KNN to the outputs

of the GPs. Using GP for feature generation, a GP output

is treated as a new feature describing the problem, based on

which KNN is used to separate the classes. This way, each

individual is deemed a feature, and the process of training

turns out to be an evolution of features. After training, some

features are chosen for KNN to classify the unseen samples.

Used in conjunction with KNN, GP is able to separate

n (n > 2) classes; on the other hand, GP selects features

for KNN, so that irrelevant features can be eliminated rather

than confusing the KNN, since the sample data available are

insufficient for good generalisation due to their high dimen-

sionality.

2. TEST PROBLEMS

The proposed method was evaluated on three real-world

data sets. Two of them are chosen from the UCI repository

[5], and the other one is of roller bearing fault detection [6].

Table 1 shows the properties of the three data sets, including

one dual-class problem and two multi-class problems.

Data set No. Features No. Class No. Samples

Bearing 156 6 2880

WDBC 30 2 569

Wine 13 3 178

Table 1. Properties of the test data sets

The data for the roller bearing fault detection was ex-

tracted from vibration signals that were taken from an ex-

periment on a small test rig, which simulates an environ-

ment for running roller bearings. Six conditions were tested

and recorded. There are two normal conditions – a brand

new normal bearing and a worn but undamaged condition;

and four fault conditions – inner race fault, outer race fault,

rolling element fault, and cage fault. There are 2880 sam-

ples in the data set, equally distributed among the six classes.

The 30 features of Wisconsin Diagnostic Breast Cancer

(WDBC) data are computed from a digitised image of a fine

V - 3490-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



needle aspirate of a breast mass. They describe characteris-

tics of the cell nuclei present in the image.

The Wine recognition data represent the results of a chem-

ical analysis of wines grown in the same region in Italy but

derived from three different cultivars. The analysis deter-

mined the quantities of 13 constituents found in each of the

three types of wines.

3. IMPLEMENTATIONS OF GP

3.1. Non-Destructive Approach

In order to limit code growth of the GP and keep the di-

versity of the population, a non-destructive approach is ap-

plied. When a modifying operator is in operation, once an

offspring has been created, the offspring o and its parent p
(the parent tree that shares the same root node with the off-

spring) are then evaluated and set with fitness fo and fp. If

fo > fp, the offspring is added to the new generation; oth-

erwise, if fo ≤ fp, neither the offspring nor the parent is put

to the new generation. After a fixed number of crossovers

and mutations, some offspring (fewer than the population

size) will be sent to the new generation. After that, repro-

duction will fill the remaining places of the new generation

using the same selection method as for modifying operators,

one by one until the new generation has enough members to

proceed. No individual would be selected twice for repro-

duction, no matter how high the fitness. This mechanism

helps avoid more than one copy of an individual, which may

cause premature convergence.

3.2. Adaptive Subtree Creation

Subtree creation’s role in subtree mutation is an important

issue as described in [7]. In order to reduce the influence

of subtree creation to the size of population, adaptive sub-

tree creation is applied in this paper. This is achieved by

keeping the average size of created subtrees as close as pos-

sible to the average size of deleted subtrees, in terms of the

whole population. When subtree mutation modifys an indi-

vidual tree x, the subtree deletion point is chosen randomly

with no preference for input nodes. During subtree creation,

the probability for growing a function node pf is given by

Equation 1, where dx is the depth of the current growing

point in the subtree being created, and s is the controlling

factor. The value of s is first set to 4 initially. Assigning

probabilities using this equation, the subtree to be created

is limited to the depth of s. After subtree creation, the dif-

ference in size between the offspring and the parent is cal-

culated. Such differences for every mutation operation over

the entire population are added up. If this sum of differ-

ences is less than zero, indicating that mutation has brought

a bias towards smaller programs, then mutation will create

larger subtrees for the next generation by dividing s by 0.9,

hence assigning more probability to grow function nodes in

subtree creation; otherwise smaller subtrees are created by

multiplying s with 0.9. Thus, the subtree creation is adapted

to the size of deleted subtrees, consequently is adapted to

the size of the whole population.

pf = 1 − dx

s
(1)

3.3. Fitness Evaluation

When calculating the fitness, the number of wrong classifi-

cation of individual x (sx) over the training set is first ob-

tained. Then fitness fx is given by Equation 2.

fx =
1√

sx + 1
− pnx (2)

where pnx is the penalty term based on the program size, nx

is the number of nodes that the program contains, represent-

ing program size, and p is weighting factor, the choice of

which is arbitrary. Intuitively, small positive values should

be used, so that the pnx component is negligible compared

to fx. This can be achieved by choosing p as in Equation 3

([8]).

p << infx[
fx

nx
] (3)

where infimum is taken over a set of best solutions evolved

without any parsimony pressure.

3.4. GP Parameters

The non-destructive approach and the adaptive subtree cre-

ation as described in Section 3.1 and 3.2 were applied. The

selection method was roulette. The best individual (elitist)

of each generation was copied to the next generation. A

node penalty of 0.001 was used. Twenty runs were carried

out for each problem, and the average performance on the

test data sets were obtained. Table 2 gives the other param-

eters for the three problems. The function pool is listed in

Table 3.

Bearing WDBC Wine

No. Generations 500 200 400

Population Size 200 500 400

No. Crossover 80 200 160

No. Mutation 80 200 160

No. Neighbors (K) 5 5 3

Table 2. GP parameters for the three problems

V - 350

➡ ➡



One-Input Operators Two-Input Operators

sin tan abs addition power

cos tanh log subtraction greater than

arcsin exp step multiplication less than

arccos sqrt ramp division average

Table 3. GP functions list

4. EXPERIMENTS

4.1. Data Preparation

In each experiment, the data set was first randomly shuf-

fled, then two third of all the available data was used as a

training set and the remaining third was used as the test set.

This is because all the other three classifiers use two third of

the data for training and validation, and one third as test set.

All the data was then normalised within each feature before

being used in the experiments. The normalisation is based

on equation (4), where m
(1)
f is the mean value of the fea-

ture vector f , and σf is the standard deviation of the feature

vector f .

f
′
i =

fi − mf

σf
(4)

4.2. Training

10-fold cross validation was conducted for training, because

of lack of available data. For each problem, the training

set was divided into 10 subsets; 9 of these were used for

training and the remaining subset was used for validation.

During the evaluation of each individual, 10 experiments

were conducted for each subset, each sample of which was

classified by KNN based on the other 9 subsets. The num-

ber of wrong classification of the 10 experiments was then

summed up for calculating the fitness of the individual.

Each GP tree in the population is a newly created fea-

ture; the process of training is the evolution of these fea-

tures. During training, each feature (individual) is opti-

mised alone. After training, some GP trees are selected

from the entire population to form a final classifier, i.e.,

some GP generated features are then sent together to KNN.

In other words, during training, KNN processes one dimen-

sional data, for the sake of simplicity in evaluation; while

after training, KNN processes multi dimensional data, to

search best performance and generality.

The non-destructive approach mentioned earlier in this

paper makes possible of the use of several features in the

population. If GP works in the original destructive way, the

performance of most offspring from crossover and muta-

tion are poorer than their parents, some of them are com-

pletely useless. Therefore in the population, there will not

be many available features to choose for KNN. However in

the non-destructive way, only those offspring with improved

performance are kept. At the end of evolution, all the indi-

viduals have relatively high performance, which have dif-

ferent structures, because diversity is better kept in the non-

destructive way. Hence, most GP trees in the final popula-

tion are effective features. The KNN has a wide choice to

find the best combination.

For the selection of the GP-created features, genetic al-

gorithm (GA) [9] could have been used for its proved ability.

However initial trials of random selection provided similar

and high performance, which indicates that further search

by GA will not significantly benefit. Hence GA was not in

use. Instead, the way features are selected is that a large

number of combinations of different numbers of features

are tried, and the combination with the best performance on

the training set is chosen as the final classifier. The number

of features from 2 to 40 are tried, with each number of fea-

tures 50 combinations have been evaluated. The method to

select individuals to form a classifier is roulette, the same as

for crossover and mutation. The reason why a multi-feature

method is used is that for the performance on the training

set, the best single GP is often equal or better than the best

multi-feature classifier; however, for the performance on the

test set, in most cases, the best single GP is poorer than the

best multi-feature classifier. This is consistent on all the

three problems, showing that the single GP is less general

than the multi-feature classifier. The number of features in

the final classifier varies, even for different runs of the same

problem. This is due to the fact that randomicity happens

everywhere in GP process and the later feature selection.

4.3. Choosing of K

Different numbers of the neighbors (k) for KNN have been

initially tested, the k with the best training performance was

chosen for each problem.

5. RESULTS

The proposed method was tested for 20 runs for each prob-

lem. The average performance of prediction on the test

data are compared with that of three other classifiers: ANN,

SVM and KNN, as shown in Table 4. The results of Wine

and WDBC data for SVM and KNN are cited from [10],

and the results of Bearing data for ANN and SVM are cited

from [6]. Because the bearing data has a large dimension

(156), a genetic algorithm (GA) was used to do feature se-

lection for ANN and SVM. GP has derived the ability of

feature selection from GA.

The results in Table 4 are similar for the four classifiers.

For WDBC and Wine data sets, GP-KNN has better results

V - 351

➡ ➡



than KNN, but not as good as SVM. However for the Bear-

ing problem, GP-KNN offers the best performance.

Bearing WDBC Wine

ANN 99.1* N/A N/A

SVM 99.4* 96.5 96.8

KNN N/A 95.6 94.7

GP-KNN 99.5 95.9 95.2

Table 4. The average performance of GP combined with

KNN (GP-KNN) on the test data are compared with that of

other classifiers: ANN, SVM and KNN. The results with *

are achieved by using GA during training for feature selec-

tion. N/A: results for that algorithm were not considered in

the papers that are cited.

Figure 1 shows the sample distribution on a single GP

solution, with the problem of bearing fault detection (6 classes).

As one can see, the six classes are located on six segments

of the GP output. The location are chosen automatically,

rather than manually.

0 100 200 300 400 500 600 700 800 900
−2

−1.5

−1

−0.5

0

0.5

1

Samples

G
P

 o
ut

pu
t

Fig. 1. Sample distribution on a GP output for the bearing

fault detection problem (6 classes).

6. CONCLUSION

Genetic programming was successfully extended for multi-

class classification in this work. Rather than in its traditional

way as a classifier, GP was used in a manner for feature

generation. KNN was applied to recognise the classes using

some of the GP generated features selected from the pop-

ulation. GP does feature selection on the original features,

and automatically generates new features for KNN. Thus it

is not necessary to train the GP for each class separately, or

set thresholds for different classes on the GP output, which

is hard to achieve good performance for relatively difficult

problems.

The non-destructive approach of GP modifying opera-

tors maintains the diversity of the population better than the

traditional destructive way, and make all individuals have

relatively high performance, which provides enough choices

to apply more GP generated features for KNN.

Experiments have given comparable results with three

other widely used classifiers, ANN, SVM and KNN, on

two multi-class problems: roller bearing fault detection and

Wine recognition, and one dual-class problem, Wisconsin

Diagnostic Breast Cancer (WDBC). The results show that

this novel classifier is successful.

Acknowledgment
Dr L. B. Jack is supported by the Biotechnology and Bio-

logical Sciences Research Council, UK.

7. REFERENCES

[1] M. Zhang, V. B. Ciesielski, and P. Andreae, “A domain-

independent window approach to multiclass object detection

using genetic programming,” EURASIP Journal on Applied
Signal Processing, , no. 8, pp. 841–859, July 2003.

[2] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal,

“Application of genetic programming for multicategory pat-

tern classification,” IEEE Transactions on Evolutionary
Computation, vol. 4, no. 3, pp. 242–258, 2000.

[3] D. P. Muni, N. R. Pal, and J. Das, “A novel approach to

design classifiers using genetic programming,” IEEE Trans-
actions on Evolutionary Computation, vol. 8, no. 2, pp. 183–

196, 2004.

[4] W. Zheng, C. Zou, and L. Zhao, “Face recognition using two

novel nearest neighbor classifiers,” in ICASSP’04, 2004.

[5] C.L. Blake and C.J. Merz, “UCI repository of machine learn-

ing databases,” 1998.

[6] L. B. Jack, Applications of Artificial Intelligence in Machine
Condition Monitoring, Ph.D. thesis, The University of Liv-

erpool, 2000.

[7] J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, MIT Press, 1992.

[8] J. P. Rosca, “Analysis of complexity drift in genetic pro-

gramming,” in Genetic Programming 1997: Proceedings
of the Second Annual Conference. July 1997, pp. 286–294,

Morgan Kaufmann.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimisation
and Machine Learning, Addison Wesley, 1989.

[10] B. Moghaddam and G. Shakhnarovich, “Boosted dyadic ker-

nel discriminants,” in Advances in Neural Information Pro-
cessing Systems (NIPS), December 2002, vol. 15.

V - 352

➡ ➠


