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ABSTRACT 

An asynchronous Brain Computer Interface (BCI) 

continuously monitors the brain signals and is activated 

only when a user intends control. Initial results from an 

asynchronous system, the LF-ASD, designed by our group 

have shown promise, but the reported error rates are still 

high for most practical applications. To improve its 

performance, we propose user customization. Since 

energy normalization of all channels’ signals is shown to 

significantly improve the performance of the system, we 

choose to customize the parameters related to this 

normalization. We apply a hybrid Genetic Algorithm (a 

Genetic Algorithm followed by a Local Search) to 

customize the size of the energy normalization windows. 

This is shown to significantly improve the results. For a 

fixed false positive rate of 2%, the improvement in the 

true positive rate was raised from 65.7% to 76.9 % in one 

subject and from 53.1% to 63.3% for another subject.   

1. INTRODUCTION 

Brain-Computer Interface (BCI) aims at providing an 

alternative communication channel between a user’s brain 

and a computer. A successful BCI design enables people 

to control their environment (such as light switches in 

their room or a wheelchair), a neural prosthesis or a 

computer by thinking of it only. This is done by 

measuring specific features of a person’s brain signal that 

relate to his/her intent as to whether or not to affect 

control. These features are then translated into signals that 

are used to control/actuate devices. 

 The Low Frequency-Asynchronous Switch Design 

(the LF-ASD) was first introduced as a BCI for 

asynchronous control applications [1, 2]. The LF-ASD 

recognizes scalp potentials related to Movement Related 

Potentials (MRPs) in the EEG signal. Unlike the 

synchronous BCI systems that monitor the brain signals in 

specific periods of time, the LF-ASD continuously 

monitors the brain signals. Being an asynchronous BCI, it 

is activated only when a user intends control (Intentional 

Control or IC state) and maintains an inactive state output 

when a user is not meaning to control the device (i.e., they 

may be idle, thinking about a problem, or performing 

some action other than control). This is called No Control 

(NC) state. Results from the LF-ASD evaluations have 

shown promise, although the reported error rates are still 

high for most practical applications. To improve its 

performance, in [3] we proposed customization of the 

system for a specific user. Since each person has different 

biological features, user customization would improve the 

performance of the system. User customization is very 

important and a method for automating customization 

process is clearly needed [1]. Since in the previous 

studies, energy normalization of the signals of all the 

different channels have been shown to improve the 

performance of the system to a great extent    [1, 3], we 

choose to customize the parameters related to this 

normalization. 

Genetic Algorithms (GAs) have been shown to be 

useful tools for automatic customization of many practical 

systems [4, 5]. In [3], encouraging results about GAs’ 

ability to improve the system performance were shown. 

However, the statistical significance of these findings was 

not explored. In this paper, we study the statistical 

significance of the results found by using GAs. On the 

other hand, although GAs are known to be good at 

exploring the search space to find promising regions 

where the optima lie, but they are weak at fine-grained 

search resulting in slow convergence. However, local 

search methods are adept to this kind of fine-grained 

search [6]. Once close to the sought optimum, they 

converge quickly. Hence, intuitively, a combination of a 

GA with a local search method (a hybrid GA) should yield 

performance improvements. Past work has indicated that 

hybrid GAs often outperform a pure GA in real-world 

applications (for review, see [6]).     
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Figure 1.  Components of the LF-ASD transducers (from [1]) 

In this paper, a Hybrid Genetic Algorithm (HGA) will 

be applied for user customization of the energy 

normalization parameters and it will be shown that the 

performance obtained here is better compared to the 

performance of the previous asynchronous BCI systems.  

Section 2 presents the structure of this system and the 

energy normalization process. In Section 3, data collection 

is discussed and the Hybrid Genetic Algorithm is 

presented. In Section 4, offline analysis of previously 

recorded data for two subjects is presented. It is shown 

that the proposed method yields statistically significant 

improvements in the performance of the asynchronous 

BCI system. Conclusions are discussed in Section 5.  

2. THE ASYNCHRONOUS BCI SYSTEM AND 

ENERGY NORMALIZATION 

2.1. Description of the LF-ASD  

The block diagram of the most recent version of the Low 

Frequency Asynchronous Switch Design (the LF-ASD) 

[1] is shown in Figure 1. This design uses features 

extracted from the 0-4Hz band in six bipolar EEG 

channels. After amplification, all the six EEG channels are 

normalized with an Energy Normalization Transform 

(ENT). Then a low-pass-filter is used to decrease the 

interference with the features in the high-frequency band. 

A wavelet-like function is applied as feature generator. 

The Karhunen-Loève Transform (KLT) component is 

used to reduce the 6-dimensional feature space produced 

by the Feature Generator to a 2-dimensional space. A 1-

NN classifier is used as the feature classifier.  The 

codebook generation mechanism that was used to generate 

a codebook for the classifier from training data is based on 

the method employed in [2].  In this method, the k-means 

algorithm with 3 vectors per class is used to generate 

initial clustering of each class. This is followed by 

Learning Vector Quantization (LVQ3) to generate the 

final codebook.  Finally, a moving average and a 

debounce block are used in order to further improve the 

classification accuracy of the system by reducing the 

number of false switch activations (for details, see [1, 2]). 

After training, the system classifies the input patterns to 

one of No Control (NC) or Intentional Control (IC) 

classes.

2.2. Description of the ENT  

The Energy Normalization Transform (ENT), applied as 

in Figure 1, demonstrated that normalizing input energy 

results in a better class separation between IC and NC 

periods [7].  The output of the ENT is calculated using 
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Where x(n) is the input signal and WN  is the length of the 

input data window used to normalize x(n). The idea 

behind using energy normalization is based primarily on 

an observation that high frequency power of EEG signals 

decreases significantly when the subject moves or intends 

to move [8]. Thus energy normalization that increases the 

low frequency power level strengthens the 0-4 Hz features 

used in the LF-ASD and hence reduces errors. In addition, 

as a side benefit, energy normalization can automatically 

adjust the mean scale of the input signal and desensitize 

the system to changes in the EEG power. Such changes 

are known to vary over time and from individual to 

individual. 

Since primary results show that the ENT improves the 

performance of the LF-ASD to a great extent [1, 3, 7], we 

expect that tuning the length of the normalization window 

for each EEG channel (6 channels in total) and for each 

subject may further improve the results.  In the original 

ENT design, the length of the normalization window was 

determined by data from one subject and the same 

parameter value was used for all other subjects as well. 

Also, the length of the normalization window used for all 

the EEG channels was the same. As the characteristics of 

different channels and different subjects are different, 

choosing a fixed window size for energy normalization of 

all the EEG channels and for all subjects would not 

necessarily yield the optimal results. Thus we expect the 

automation of the customization process of the BCI 

system for each subject improves the performance. This 

will also save time and energy significantly. 

Based on these remarks, in the next section, we show 

how Hybrid Genetic Algorithms (HGAs) are used to 

automatically adjust the parameters of the energy 

normalization process for each subject.  
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3. METHODS 

3.1. Data Collection  

Data used in this offline evaluation was collected in a 

previous study (see [1] for details). EEG signals were 

recorded from six bipolar electrode pairs positioned over 

the supplementary motor area and the primary motor 

cortex (based on the International 10-20 System at F1-FC1,

Fz-FCz, F2-FC2, FC1-C1, FCz-Cz, and FC2-C2). All signals 

were sampled at 128 Hz. 

The data of two subjects, one with a high-level Spinal 

Cord Injury (SCI) and one able-bodied subject, recorded 

over six sessions, was considered for this study (see Table 

1 for subject information in this study). The SCI subject 

had no residual sensation or motor function in the hands 

and no other compounding physical or emotional 

conditions that may have interfered with the study and 

was not ventilator dependent.   

Table1. Subject information for this study 

  Subject Gender Age SCI/Able-bodied 

BK Male 56 SCI 

ID Male 43 Able-bodied 

3.2. The Hybrid Genetic Algorithm (HGA) 

In this paper, a hybrid binary genetic algorithm (HGA) is 

used for tuning the size of the normalization windows of 

the ENT for each EEG channel. We ran the algorithm 10 

times for each subject starting from different initial 

populations. The data of the first session was used for 

training and the rest of the data was used for testing. The 

results of each run were stored on a hard disk for further 

statistical analysis. 

The specifications of the HGA used here are as follows: 

Chromosomes: Each chromosome consists of a 

concatenated binary version of seven parameters. Six of 

these parameters are the energy normalization windows 

related to six bipolar channels. The last parameter is a 

scaling factor, which determines the operating point on the 

receiver operating characteristic curve (ROCC). The 

ROCC shows the relationship between TP and FP for each 

parameter configuration (for details, see [1]). 

Fitness Function: In defining fitness function for an 

asynchronous BCI, two evaluation criteria should be 

considered: True Positives (TPs) and False Positives 

(FPs). A TP rate is the percentage of correct system 

responses during those periods when the user intends 

control and a FP rate is the percentage of incorrect system 

responses during the No Control periods. These criteria 

are positively correlated [1] and our aim is to maximize 

the TP for a reasonably low fixed FP rate. We explored 

various configurations for the fitness function, which are 

not reported because of space limitation. Based on 

previous results, a FP rate above 2% causes excess 

frustration and distraction in subjects using an 

asynchronous system [1]. Thus it is very important to keep 

the FP rates below 2%. 

  On the other hand, the computation time of the TP rate at 

a fixed FP rate from the receiver operating characteristic 

curve (ROCC) was relatively high. Hence, our final 

configuration incorporated the FP as a constraint in the 

fitness function and we defined the fitness function as 

follows: 
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where in (2), TP and FP are in %. In equation (2), only for 

FP less than 2%, the TP rates remain intact. We also kept 

FP rates between 2% to 3 % (with penalized fitness), in 

hope of finding a very high value of TP for a moderate FP. 

As for values of FP > 3%, we attenuated the fitness of 

these chromosomes dramatically in order to prevent the 

less fit chromosomes from becoming active members of 

the population. Because although these chromosomes had 

high TP rates, but they also had very large FP rates at the 

same time. 

 -Selection Method: Tournament-based selection 

(tournament size =2) 

- Uniform crossover and uniform mutation
- Size of the initial population: 100 (random initialization), 

size of the population 50.  

- Memory: a memory block was used to store the values of 

the chromosomes and the corresponding fitness function. 

This memory block was used in order to prevent 

calculation of fitness function for similar chromosomes.  

-Termination Criterion of the HGA: Even for a relatively  

fast PC with 1.7 GB Pentium IV processor, each 

evaluation of the cost function of the LF-ASD takes 

several minutes (it is desired that a near optimal 

performance be achieved with a reasonable number of 

function evaluations). Hence, for this paper, the number of 

evaluations was set to 3000. Also if for more than 10 

consecutive generations, the amount of improvement in 

the best solution found so far is less than 1%, the 

algorithm is terminated. 

- Local Search: Upon termination, a systematic local 

search based on bit flipping is performed on the best 

solution. The solution of this stage will be chosen as the 

final solution of the HGA. 

4. RESULTS 

The results of applying the HGA to optimize the length of 

the Energy Normalization Transform (ENT) are shown in 

Table 2. The optimum points found by the HGA are very 

close to the constraint boundary (FP=2%) which is what 

we were seeking to achieve, because the points near the 

boundary have the highest value of TP (for %)2≤FP . As 

for the comparison with the original system, we calculated 
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Table 2. Results of applying GA to ENT for FP=2% 

Sub Ave. 

TP

(%)

TP for 

Window 

Size=51(%) 

Improve 

p<0.01 

Number 

of Eval. 

ID 63.3 53.1 10.2 1616.9 

BK 76.9 65.7 11.3 1407.8 

the TP rates for the same subject when all the 

normalization window sizes were set to 51 (the window 

size used in [1]). The 4th column in Table 2 shows 

significant improvements in terms of classification 

accuracy for both subjects (p<0.01). This shows the 

importance of customizing the length of the ENT for each 

subject automatically. Also in Figures 2 and 3, we have 

plotted the ROCC for each subject based on two different 

settings: (a) a dashed curve denoting fixed normalization 

window (window size=51) and (b) a gray region denoting 

the region between the ROCC corresponding to best and 

worst results obtained in 10 runs of HGA. As it can be 

observed in these figures, the    optimal   values   of the 

normalization window yield better ROCC with respect to 

their fixed window size counterparts for all values of scale 

factors. Further analysis also showed an average 

improvement of 2.7% in the performance of the HGA 

compared to the performance of a simple GA (used in [3]) 

for subject BK and 1.6% for subject ID (averaged over 10 

runs of algorithms). This shows the benefit of adding a 

local search algorithm in order to further fine-tune the 

results. 

5. CONCLUSIONS  

In this paper, we presented the results of applying a 

Hybrid Genetic Algorithm (HGA) to user customize the 

optimal window size of the energy normalization 

transform of an asynchronous BCI system. The 

importance of this new approach is two-fold: 

1) We used a HGA to improve the local search capability 

of the genetic algorithm. 

2) The statistical significance of the HGAs compared to 

the previous methods showed superior performance in 

terms of classification accuracy. 

   As for future work, we plan on optimizing the 

parameters of all components of the LF-ASD.
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