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ABSTRACT

Matched and adaptive subspace detectors apply to a wide
range of problems in radar, sonar, and data communication,
where the signal is constrained to lie in a multidimensional
linear subspace. These detectors generalize known results
in matched and adaptive detection theory. In this paper we
propose an original approach to anomaly detection based on
Whitening and Spatial Correlation Filtering (WSCF). The
performance is investigated in terms of the detection proba-
bility, and the false alarm ratio. A comparison permits us to
show how this new method can outperform the well-known
Reed and Xiaoli Yu (RX) algorithm.

1. INTRODUCTION

Hyperspectral sensors collect the spectral signature of a num-
ber of contiguous spatial locations (pixel) to form a hyper-
spectral data cube [1]. The basic task underlining many hy-
perspectral sensor imagery applications is to identify differ-
ent materials based on their reflectance spectrum. In this
respect, the concept of a spectral signature, which uniquely
characterizes any given material, is highly attractive and
widely used [2]. However, spectra observed from samples
of the same material are never identical due to variations in
the material surface, even in laboratory experiments. The
amount of variability is more important in remote sensing
applications due to the variations in atmospheric conditions,
sensor noise, material composition, location, surrounding
materials, and other factors. To make matters worse, totally
different material types can have very similar spectra. Ad-
ditional sources of spectral variability are calibration and
illumination variations which are not currently handled by
atmospheric correction codes. Under these conditions, it
is sometimes preferable not to introduce target information
when the application allows it [3, 4].

If we have no prior information about the target or if we
wish to work with radiance, the most reasonable approach
is to look for pixels whose spectral content is ”significantly”

different from those of the local background. This process
is known in hyperspectral literature as anomaly detection
[5, 6, 7]. Hyperspectral and multispectral imagery shows a
great potential for this task because it provides both spectral
and spatial features about the targets and backgrounds in the
imagery.

In a first part, we present an overview of Anomaly De-
tector algorithms, and in particular Reed and Xiaoli Yu (RX)
algorithm [5, 6], which is extensively used in multispectral
and hyperspectral imagery. In a second part, we show that
RX model fails when target overlays many pixels, and we
develop Whitening Spatial Correlation Filtering (WSCF), a
new method which allows to solve this problem. Then, in
a third part we present a detailed comparison between the
two algorithms RX and WSCF on simulated data. In par-
ticular, we make a study on the performances of algorithms
with respect to the target size. Finally, we conclude on the
performance of this new model.

2. ANOMALY DETECTOR

In several applications, we do not have any a priori informa-
tion about the desired target. In such cases, it is possible to
design algorithms searching for spectra which deviate from
the local background (anomaly detection). This problem is
typically formulated as a binary hypothesis test with two
competing hypotheses: background only (H0) or target and
background (H1). Since the two hypotheses depend on un-
known parameters (for example background covariance ma-
trix) which have to be estimated from the data, the detector
has to be adaptive and is usually designed using the gener-
alized likelihood ratio test (GLRT) approach. The type of
statistical model used for the background leads to different
anomaly detection algorithms.

2.1. RX algorithm

The use of a multivariate normal distribution model leads
to the RX algorithm, which is extensively used for anomaly
detection.
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DRX(x) = (x − µ)t
Γ̂
−1(x − µ)

H1

≷

H0

η, (1)

where x is the spectral pixel vector, µ the mean spectral
vector for the region of interest (the mean of each spectral
band), Γ̂ the estimated spectral covariance matrix, and η a
threshold set according to the desired false alarm probabil-
ity. The quantity D is a spatial map emphasizing the most
anomalous pixels. Basically, DRX(x) estimates the Ma-
halanobis distance of the test pixel from the mean of the
background, which is zero for demeaned data [2]. That
algorithm is a locally adaptive Constant False Alarm Rate
(CFAR) detector [2], which assumes spatially uncorrelated
Gaussian clutter and known target spatial signature with un-
known spectral distribution and covariance matrix. An esti-
mate of the target amplitude is made at each position within
the image.

2.2. Other approaches

In [7] Schweizer and Moura developed a CFAR algorithm
based an a first-order Gauss-Markov random field model for
the clutter. In that algorithm a maximum likelihood tech-
nique was used to estimate the clutter parameters, which
were then used in a GLRT detector. Several authors have
attempted to exploit target spectral characteristics. Ash-
ton used clustering algorithm to find sub-pixel anomalies in
multispectral IR terrain imagery. In [8], Ashton and Schaum
used RX algorithm to search for anomalies in background-
suppressed spectral signatures. A very different approach
was exploited by Banerji and Goutsias in [9], who used
mathematical morphology to detect mines in individual bands
followed by a fusion of the band information. Correlation
among the bands was addressed by the use of a maximum
noise fraction transformation to generate independent bands.

3. WHITENING SPATIAL CORRELATION
FILTERING

3.1. Failure of the model

The purpose of anomaly detection is to search for and locate
targets which are generally unknown, but relatively small
with low probabilities of occurrence in the image scene.
The size of the anomaly target depends on the application.
It goes from a size inferior to the spatial resolution of the
image, to several tens of pixels. However, even when its
size is smaller than the spatial resolution of the image, noth-
ing indicates a priori that it is located on a single pixel of
the image. That’s why the assumption of spatially uncorre-
lated clutter is generally not valid and the performance of
RX algorithm decreases in such cases.

In [3], Liao and al. have noted this problem and propose
an efficient pre-filtering to reduce spatial overlap between
the target and the clutter and to improve detection of surface
mines in multispectral IR and visible imagery. The objec-
tive of the Whitening Spatial Correlation Filtering method
is the contrary; it is to take this remark into account to im-
prove the detection performances of the RX algorithm.
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Fig. 1. ROC curves with Abundance=0.6, SNR=14, and
Radius=1.

3.2. Proposed WSCF algorithm

The whitening transformation is expressed by (2):

x̃ = Λ
−1/2

U
t
x, (2)

where Λ is the eigenvalue matrix, and U an orthogonal lin-
ear transformation composed of the eigenvectors of Γ̂. Us-
ing the whitening transformation, the RX anomaly detector
can be expressed as DRX(x) = x̃

t
x̃ which is the Euclidian

distance of the test pixel from the background mean in the
whitened space. The RX anomaly map is represented by the
Euclidian norms of the whitened vectors.

I(i) = ‖x̃i‖, (3)

where ‖ ‖ is the Euclidian norm.
To highlight the problem, let us suppose an anomaly

map with a zone gathering a high density of anomalies. This
map does not allow to determine if this strong density of
anomalies is due to the same target distributed on several
adjacent pixels, or to a coincidence between disturbed pix-
els. However, the direction of the spectral pixel vectors in
the anomaly zone contains this information. If the spectral
pixel vectors have close orientations, we can suppose that
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Fig. 2. Pd with respect to the SNR, with Pfa=10−4,
Radius=1, and Abundance=0.6.

it is extremely probable that they are due to the same tar-
get. On the contrary if the orientations are distant, we can
suppose that they are due to disturbed pixel vectors or dif-
ferent targets. The idea of Space Correlation Filtering is to
introduce a methodology as well as a criterion to take this
information into account. We have seen that RX anomaly
map is represented by the Euclidian norms of the whitened
vectors. We propose the following anomaly map for the
WSCF approach:

IWSCF (i) = ‖x̃i‖ + α
∑

j∈v(i)

ρi,j ‖x̃j‖, (4)

where α is a parameter discussed thereafter, v(i) is com-
posed of the 8-neighbors of the pixel vector i, and ρi,j in-
dicates the coefficient of correlation between the whitened
pixel vector i and the whitened pixel vector j.

We express IWSCF as:

IWSCF (i) = ‖x̃i‖ (
x̃

t
ix̃i

x̃t
ix̃i

+ α
∑

j∈v(i)

x̃
t
ix̃j

x̃t
ix̃i

). (5)

Let notice that the filter known as minimum variance beam-
former, or constrained energy minimization (CEM) algo-
rithm [10] for the interested target signature xi, applied to
the pixel vector xj is given by (6):

DCEM (xj) =
x̃

t
ix̃j

x̃t
ix̃i

. (6)

Then DCEM (xj) can be viewed as the estimated abundance
of xi contained in the pixel xj. So, (4) and (5) express
IWSCF (i) like a sum of estimated abundance of xi con-
tained in v(i).
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Fig. 3. Pd with respect to the Abundance, with Pfa=10−4,
Radius=1, and SNR=14.

4. COMPUTER SIMULATION

This section conducts a comparative analysis between RX
algorithm and WSCF algorithm experiments to demonstrate
their relative performance using a series of computer simu-
lations. We extract from hyperspectral images of HYDICE
sensor imagery (16 bit BIL) four field reflectance spectra
from one image and one from another. Low signal/high
noises bands and water vapor absorption bands are removed.
In our simulation, the first four spectra represent the back-
ground, and the last one represents the target. We construct
a simulated background with random abundance. Then, we
choose circular target repartition with two parameters: the
abundance (between 0 and 1 ) and the radius (expressed in
pixel). For each estimation of the Probability of detection
(Pd), we perform 1000 processes in which the Probability of
false alarm (Pfa), the Signal Noise Ratio (SNR), the radius
and the abundance of the target are constant. In each pro-
cess, the following values are modified: the distribution of
the background abundance, the realization of the noise, and
the position of the target center (so the target/background
ratio repartition).

In Fig. 1, we show a receiving operator characteris-
tic (ROC) curve. Clearly, the WSCF model performs RX
model (α = 0) for target with radius equal to 1. A good
choice of α seems to be 0.2 in this case.

In Fig. 2 let us show the evolution of the probability of
detection with respect to the SNR, with constant abundance
and target radius. Firstly we can bear out the good choice
of α = 0.2. Then we can notice that for various values
of α the curves do not intersect. Moreover, in Fig. 3 the
same phenomenon for the evolution of the probability of
detection with respect to the abundance can be observed. So
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Fig. 4. Abundance with respect to the Radius, with
Pfa=10−4, SNR=14 and many Pd.

we can conclude that the best choice of α depends neither
on the target abundance nor on the SNR. On the other hand
it depends on the target size. It seems to be obvious that
the smaller the target size is, the smaller the best α is, and
conversely. The limit is defined by α = 0 (RX model) for a
target radius equal to 0.

In Fig 4 we show the evolution of the target abundance
with respect to the target radius, with false alarm probability
equal to 10−4 and for many probability of detection. Firstly,
the larger the target size is, the larger the difference between
the two methods is. Then, we notice for a target radius su-
perior to 0.65, the WSCF model with α = 0.2 performs the
RX model.

5. CONCLUSION

In this paper we have presented a new approach of anomaly
detection for multi band imagery named Whitening Spatial
Correlation Filtering (WSCF). It is based on a whitening
filtering followed by Spatial Correlation Filtering. We have
justified the interest of this original method to overcome a
failure in the well known RX anomaly detector, due to the
fact that the anomalies can cover several pixels. Then we
have shown the superiority of this model under the RX al-
gorithm for anomaly target whose radius is superior to 0.65
time the spatial resolution of the image. After this theoreti-
cal study, it will be necessary to test the WSCF method on
real applications. Several applications seem adapted: for
example the detection of surfaces mines or the detection of
soil mineralogy.
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