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ABSTRACT 
 
Logistic regression is one of the frequently used models in 
pattern recognition, especially in binary classification tasks. 
We focus on a class of small-sample classification problems 
where logistic regression seems to be a “natural” choice for 
the classifier, yet its direct application yields sub-optimal 
results. Specifically, we consider cases when: 1) input-output 
relationships are non-linear, 2) there is a need to estimate 
hidden states or auxiliary variables in the model, and 3) the 
training set is small preventing the use of more sophisticated 
techniques. We first describe an approach to compute the 
parameters of the regression, which addresses the issue of 
estimating hidden variables. We then describe a recursive 
adaptation procedure that identifies the most significant non-
linear relationships in the data and adapts the model by 
introducing corresponding higher-order terms. The 
performance of the method is tested in a business modeling 
application, demonstrating significant improvements over the 
traditional classifiers.  

1. INTRODUCTION 

Logistic regression model is one of the most frequently 

used approaches in pattern classification. It is used either as a 

stand alone technique to model input-output relationships in a 

wide range of applications [1]-[3], or as an underlying kernel 

function in the support vector machine classifiers (SVM) 

[4],[5]. In this work we focus on a class of problems where 

logistic regression seems to be a “natural” model, yet its direct 

application yields sub-optimal results. In particular, we focus 

on problems where the following statements apply: 1) the 

input-output relationships are complex, 2) in addition to the 

input-output relationships there is a need to estimate hidden 

states or auxiliary variables in the model, and 3) the training 

set is very small. Problems of this type occur frequently in 

business analytics applications, financial forecasting, drug 

discovery and pharmaceutical research, where the outcome is 

typically driven by a complex set of often mutually related 

factors, and where historical examples of certain behavior 

needed to train the model are limited. Such problems include: 

1) business process modeling and forecasting (e.g. customer 

targeting and estimating the likelihood of buying a new 

product, deciding if a company is “risky” customer, deciding 

weather to pursue an investment into a project, evaluating a 

business action of a company, etc.), 2) evaluating the quality 

of software engineering projects, 3) bankruptcy prediction, 

and 4) monitoring the effect of a combinational therapy on a 

patient. This work describes a new methodology for designing 

and training logistic regression classifiers, suitable for the 

problems of this kind. We also demonstrate the use of the 

method in a business analytics application. 

The first aspect of the problem can be more formally 

described as “given a set of inputs and observed outputs, 

estimate both the parameters of the model and several hidden 

states if only partial a priori information about the states is 

given.” An example of such a problem is developing a 

dashboard to track a portfolio of large IT services customers 

and identifying those who might decide to terminate their 

contract, or renegotiate it to achieve lower price, both leading 

to a significant loss of revenue to the service providing 

company. In this case, the inputs to the model are numerous 

variables that describe the following five risk factors: 1) 

financial health of client companies, 2) previous relationships 

with the service provider, 3) price and competitiveness of the 

offered service, 4) significant events in the client company 

that could have a potential impact on the decision to cancel the 

service (e.g. change of CEO, merger, restructuring, etc.), and 

5) previous history of contract terminations or renegotiations. 

The output variable is the likelihood that a customer will 

terminate its contract (or a part of it). Conventional 

classification methods are limited to estimating the likelihood 

of termination, without providing insights into which factor is 

most influential in the decision. Yet, knowing the impact of 

different factors to the client’s decision can help the service 

providing company influence the outcome. For example, if the 

decision to terminate is based on the limited cash availability, 

the service providing company might architect different ways 

of financing for the customers with lower liquidity. On the 

other hand, if the decision is formed based on the low 

satisfaction with the service, the service providing company 

can still influence the outcome by improving the service and 

mobilizing its sales and marketing teams to save the 

relationship with the customer. These “risk factors” are 

typically not known a priori; what are known are only the 

variables that influence them. Therefore, these “risk factors” 
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can be seen as hidden states in the model. (Note an important 

difference between this problem and many signal processing 

and control problems where the objective is to estimate states 

or auxiliary variables in the presence of noise [2]). In 

traditional classification methods, such as logistic regression, 

after the parameters of the model have been estimated, the 

values of these states are computed as a bi-product of the 

model. However, in many applications, at least some of the 

relationships among these factors (i.e. hidden variables) are 

know. For example, in the aforementioned problem of the 

dashboard design, it is often possible to provide additional 

information in the form of “Company A has been more 

satisfied than Company B” or “Company C has better 

financial health than Company D”. Since the traditional 

parameter estimation techniques, such as MAP or iteratively 

reweighted least squares, do not account for these 

relationships, the estimation of hidden variables obtained with 

the standard parameter estimation procedures is not optimal. 

Hence, it is of interest to develop training procedures that will 

capture such relationships in the data. 

The second aspect of the problem can be more formally 

described as “given a small set of input-output examples, 

estimate the parameters of a simple model, so as to capture 

complex non-linear input-output relationships in the data.” 

While conventional learning algorithms produce sufficiently 

accurate methods for many applications, when working with 

small data sets (and especially when there are non-linear 

relationships among the variables) they suffer from many 

limitations, which if overcome, could greatly improve the 

performance of the data classification and regression systems 

that employ such models. The small size of the training set 

severely limits the selection of the classifier to the simplest 

models, which typically do not account for non-linear 

relationships in the data, which are to be discovered in the 

training phase. For example, the tree-based classifiers that 

effectively capture complex relationships in the data [8] 

cannot be applied at all if the training set is small. The small 

size of the training set also limits the number of input 

variables. Increasing the number of input variables in the 

model increases the number of free-parameters. This results in 

a deteriorating performance, the “curse of dimensionality”, 

which is due to the mismatch between the size of the training 

set and the number of free parameters. This can be overcome 

with a new class of “SVM-like” models that operate in 

sparsely populated feature spaces [10]. Such models rely on 

the observed relationships between the number of training 

samples m, number of features k, and the generalization error 

of the classifier. Namely, for many traditional classifiers 

trained by m objects, the generalization error e(k) increases 

with the increase in feature size, and reaches the maximum at 

about k = m (the “peaking phenomenon”). However, it has 

been observed that after the maximum is reached, in cases 

when the sample size is significantly smaller that the feature 

size (m < k), it is possible to obtain classification 

performances that are much better than those obtained with 

“sound” feature sizes [10]. However, in many applications it is 

not possible to select a large number of features as required by 

such approach. Therefore there is a need for simple models, 

which can be constructed from the small training samples to 

capture non-linear input-output relationships.  

2. OVERVIEW OF THE STANDARD LOGISTIC 

REGRESSION MODEL 

Let us consider a simple classification problem of a data 

labeled by a random variable, ω, which takes its values from a 

discrete set },{ 1ωω∈ω o . The input data is in the form of a    

L-dimensional random vector, ],,,[ 21 Luuu K=u . A natural 

choice for the model in this case is the logistic regression 
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The logistic model is also known to be more robust against 

violations of multivariate normality assumption than the naïve 

Bayesian classifiers [6]. Parameters of the model, a, are 

usually determined by maximizing the log-likelihood function 
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where NiS ii ,...,1},,{ =ω= u  is the training set and iz  is an 

indicator random variable, which has the value one when 

oi ω=ω  and zero otherwise. There exist no closed form 

solution for (2) and a is often computed by taking the second 

derivative of (2), which yields the Newton-Raphson update 
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where k is the iteration number, U is a matrix whose rows are 

the vectors iu , )(kV  is a diagonal matrix whose elements are 

))(1)(( kyky ii − , and )(k∗z  is a vector with elements 

)))(1)((/())(( kykykyz iiii −− . This update rule is also referred 

to as Iteratively Reweighted Least Squares (IRLS). Newton-

Raphson takes this form not only for logistic regression 

problems, but for a family of statistical models known as 

Generalized Linear Models [7]. 

3. PARAMETER RE-ESTIMATION IN CASE OF 

PARTIALLY KNOWN HIDDEN VARIABLES 

We now extend the logistic regression method to address 

the case of partially know hidden states. As an illustration let 

us use the customer targeting application described in 

Introduction. In building a model that estimates the likelihood 

of terminating a services contract, in addition to estimating the 

overall risk of termination, we also need to capture which one 

(or which combination) of the five risk factors (i.e. financial 

health, client satisfaction, price, significant corporate changes 

and history of termination) drives the overall risk. Back to our 

logistic model, this calls for introducing five hidden variables, 

51 xx − , to measure the contribution of the five risk factors. 

Then, the straightforward solution to estimate 51 xx −  is to 

use linear combinations of explanatory variables that are 

related to the corresponding risk factors, as 
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where: M is the number of hidden variables (in our case 

M = 5), u is the vector of measured inputs rewritten as 

]...[ 21 Muuuu =  and iu  is a vector of inputs that contribute 

to the state i. The regression above assumes that the hidden 

variables (states) are entirely unknown and will be computed 
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as a bi-product of the model. This is an acceptable solution; 

however, it is not an optimal one when some information 

about either the value of some of the hidden states or their 

relationship is available. Let us assume that this information is 

given a priori, or can be entered into the model by modifying 

the initial estimates to reflect the known relationships. (For 

example, the known relationship “company k had better 

financial health than company l” could be enforced by 

increasing the estimated value k
T

11 ua  to reflect lk xx 11 > ,  or  

“company p had higher customer satisfaction than company q” 

could be entered into the model by increasing the value of 

p
T

22 ua  to reflect qp xx 22 > .) Given the matrix }{ jixX = , 

,,...,1 Mj = Ni ,...,1=  whose entries are known, estimated, or 

modified values of the states in the model, we can rewrite the 

objective function as 
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where ε  is a predefined threshold. Solving (5)-(6) using 

Lagrange multipliers gives a new update rule for a: 
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where λ  is the Lagrange multiplier, µ  is the step size, 

]...[ 21 Miiii uuuu =  is L×1 vector of inputs, jiv  is a L×1

vector defined as ]......[ 21 Mijiiiji ouoov = , and kio  is a 

zero vector of the same length as the sub-vector kiu .  

4. MODEL ADAPTATION TO CAPTURE                 

NON-LINEAR RELATIONSHIPS 

Note that in general, equation (4) assumes that any input 

variable can contribute to any state. Eq. (4) can be also 

generalized to account for quadratic terms, higher-order 

nonlinearities or any other relationship )( ua,fx = . In many 

applications the performance of the model depends entirely on 

the ability of the classifier to capture such relationships. For 

example, in the customer targeting application described 

above, variables related to customer satisfaction and business 

efficiency are much more important to the clients who are 

paying high price for the service than to the clients who have 

negotiated lower price. The later are less likely to terminate 

their contract unless something happens to their business, 

implying that in such examples, variables related to financial 

health are far more important. Parametric models such as (1) 

fail to adequately approximate these relationships, unless the 

relevant quadratic terms are already included into the training 

set, or a non-linear form of (4) is used. An alternative 

approach is to use treed models, consider a partition of the 

data and then fit a separate logistic model within each subset 

of the partition [8]. This is illustrated in Fig. 1. In practice, 

when dealing with small training sets, the small number of 

samples does not allow for any partitioning of the data, 

thereby severely limiting the model selection to the simplest 

structures with few explanatory variables.  
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Fig.1: Traditional tree-based regression. 
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Fig. 2: Model adaptation used to identify significant non-

linear relationships in the data. 

To construct a logistic model that will capture at least 

some of the complex input-output relationships, we propose a 

recursive approach to estimate significant nonlinear 

relationships and include them in the set of explanatory 

variables u. We will use a modification of the tree-structured 

approach. We start by estimating the parameters, a, of logistic 

model (1) via (7), and compute the classification error as: 

∑
=
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ii zz
N

e

1

2)ˆ(
1

                     (8) 

In each iteration, we will use a different input variable, pqu , 

to split the data into two subsets, aS  and bS , and fit a 

separate regression model in each subset. We then compute 

the relative difference between the parameter values, pqa∆ , 

and change in model error, pqe∆ , as: 
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where b and c are the parameters computed from the subsets 

aS  and bS , respectively. This procedure is illustrated in 

Fig. 2. The iteration continues until all variables of interest are 

explored. The values pqa∆  and pqe∆ ,  where Mp ,...,1=  and 

Nq ,...,1= are used to identify combinations of variables that 

results in a significant change in parameter values (and a large 

decrease in the classification error) and expand the logistic 

model by adding the corresponding quadratic terms, e.g. 
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KK −+−+ 21,212111,1111 )()( uudauuda ststpqpq

Once these new terms are added to the model, the final 

parameters, a and d, are computed via (7).  

5. RESULTS AND CONCLUSIONS 

We have applied the proposed approach in the previously 

described dashboard design problem, to track the portfolio of 

large IT services clients in the IBM Global Services division 

and identify those who are likely to terminate or reduce the 

scope of their engagement. The training set consists of 84 IT 

services clients over the period of three years. Some clients 

have been “measured” at different time periods yielding a 

dataset with 148 samples (79 examples of companies that 

terminated their services engagement and 69 examples of 

companies that had no significant changes to their services 

contract). As input to the model we have selected 18 

explanatory variables, grouped according to the five risk 

factors, ]...[ 51 uuu = . We used: 1) nine financial metrics 

(revenue growth, earnings volatility, return on assets, expense 

growth, etc.), ]...[ 19111 uu=u , reflecting the financial health 

of the client, )( 1x , 2) three inputs from customer 

surveys, ][ 2322212 uuu=u , reflecting client satisfaction, 

)( 2x , 3) two inputs, ][ 32313 uu=u , that capture the price of 

the service engagement, )( 3x , 4) three inputs representing the 

number of officer changes, share repurchases and 

restructurings in the trailing 12-month period, 

][ 4342414 uuu=u , reflecting significant changes in client 

company, )( 4x , and 5) one variable ][ 515 u=u  indicating the 

previous history of contract changes, )( 5x .  

We have first compared the model errors for the standard 

maximum a posteriori classifier (MAP), logistic regression 

model (LRM) trained via (3) and the proposed adaptive 

logistic regression classifier (ALRM). The ALRM model has 

been trained by computing the initial values for hidden 

variables 51 xx −  via IRLS, modifying some of the initial 

estimates to reflect known relationships in the data, and re-

estimating the parameters of the model via (7). Furthermore, 

the adaptation procedure (described in Section 4) has 

identified three significant non-linear relationships and the 

model has been expanded with the corresponding quadratic 

terms, resulting in total of 21 parameters for the ALRM 

model. The comparison between the model errors is given in 

Table 1. Note that both LRM and ALRM1 have the same 

training error (8), however ALRM1 captures the specified 

relationships better - the value of state error (6) is significantly 

smaller for ALRM than for the LRM model.  

The small size of the training data does not allow for the 

use of independent sets to train and test the model. Therefore, 

we have assessed the performance of the classifier by using 

the standard leave-one-out cross validation approach [9]. 

Table 2 compares the classification error between the MAP 

classifier, LRM and ALRM models. As it can be seen 

introducing the additional variables identified in the adaptation 

procedure significantly improves the classification accuracy. 

Fig. 3 illustrates an example from a dashboard application 

developed for IBM Global Services division (using the new 

method) to monitor their largest IT services customers. Our 

results indicate that in small-sample classification problems 

with “non-linear” relationships the proposed approach has 

advantages over the traditional methods.  

TABLE 1: THE COMPARISON BETWEEN THE TRADITIONAL LOGISTIC 

REGRESSION MODEL AND THE NEW APPROACH. TRAINING ERROR IS 

COMPUTED VIA (8), STATE ERROR IS COMPUTED VIA (6). 

Model type 
Training 

error 
State 
error 

#
inputs 

MAP 0.297 0.561 18 

LRM 0.229 0.365 18 

ALRM1 (without adaptation) 0.229 0.029 18 

ALRM2 (with adaptation) 0.149 0.017 21 

TABLE 2: THE COMPARISON BETWEEN THE CLASSIFICATION 

ACCURACY OF TRADITIONAL MODELS AND THE NEW APPROACH.

Model type 
Classification 

error 
# inputs 

MAP 0.301 18 

LRM 0.249 18 

ALRM2  0.158 21 

SUMMARY

Financial & Business Performance

Client Satisfaction

Pricing

Significant Developments

Prior Re-scoping

Computed for Q1 2004

Under Stress

High

Average

High Impact

No previous re-scoping

CUSTOMER XYZ High Risk

SUMMARY

Financial & Business Performance

Client Satisfaction

Pricing

Significant Developments

Prior Re-scoping

Computed for Q1 2004

Under Stress

High

Average

High Impact

No previous re-scoping

CUSTOMER XYZ High Risk

Fig. 3: An example of a client scorecard from the business 
analytics application that uses the described approach.
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