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ABSTRACT

We develop a novel classifier in a kernel feature space de-
fined by the eigenspectrum of the Laplacian data matrix.
The classification cost function is derived from a distance
measure between probability densities. The Laplacian data
matrix is obtained based on a training set, while test data is
mapped to the kernel space using the Nyström routine. In
that space, the test data is classified based on the angle be-
tween the test point and the training data class means. We
illustrate the performance of the new classifier on synthetic
and real data.

1. INTRODUCTION

Spectral methods for multivariate data analysis are emerg-
ing as powerful tools, mostly based on their practical suc-
cesses, for example in clustering [1]. Spectral methods are
typically based on a kernel matrix of pairwise relationships
between the samples, from which a more useful data repre-
sentation can be derived by utilizing its eigenvalue decom-
position, or eigenspectrum. Until recently, only those points
used to calculate the kernel matrix have been possible to
represent in the kernel feature space. Therefore, spectral
classifiers have been slow to emerge since these have to be
able to represent successively new data points in the kernel
feature space. Recently, it was shown how the map new data
points into the feature space by using the Nyström routine
[2].

In this paper, we propose a new spectral classifier based
on the Laplacian pdf distance, which is introduced as a clus-
tering cost function in a recent paper by the current authors
[3]. The Laplacian pdf distance exhibits a connection to
Mercer kernel based learning theory via the Parzen window
technique for density estimation. In a kernel feature space
defined by the eigenspectrum of the Laplacian data matrix,
this distance measures the cosine of the angle between the
class mean vectors. Interestingly, in [3] it was shown that
when the prior probabilities of the classes are roughly equal,
minimizing the Laplacian pdf distance corresponds to min-
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imizing the probability of error. However, if the prior prob-
abilities are unequal, the Laplacian pdf distance will act as
a risk function, emphasizing to classify correctly the least
probable class.

Quite importantly, based on the Parzen method, an opti-
mal spectral data transformation can be obtained. We pro-
pose to learn the optimal Laplacian data matrix based on
a training data set. Hence, the transformation to the ker-
nel feature space is defined by the eigenspectrum of that
matrix. In the kernel space, we compute the means of the
transformed training data. A test data set, which is to be
classified, is mapped to the kernel space by means of the
Nyström routine. Based on the Laplacian pdf distance in
the kernel space, a spectral classifier is developed. The an-
gle between a test point and the class means is computed.
Thereafter, the test point is assigned to the class yielding
the smallest such angle.

For the convenience of the reader, we briefly review the
theory behind the Laplacian pdf distance in section 2. The
material presented here is a compressed version of [3]. We
only consider the two-class case, even though multiclass
generalizations can easily be made. In section 3, we de-
velop the novel Laplacian spectral classifier. Thereafter, in
section 4, we present some experimental studies of the pro-
posed method. Finally, in section 5, we make our conclud-
ing remarks.

2. THE LAPLACIAN PDF DISTANCE

2.1. Mercer kernel-based feature spaces

In Mercer kernel-based learning algorithms a nonlinear
mapping is potentially performed as

Φ : Rd → F
x → Φ(x) = [

√
λ1φ1(x),

√
λ2φ2(x), . . . ]T , (1)

where the λi’s and the φi’s are the eigenvalues and eigen-
functions of a Mercer kernel. Hence, the data x1, . . . ,xN ∈
Rd is mapped into Φ(x1), . . . ,Φ(xN ) ∈ F . The Mer-
cer kernel computes an inner product in the feature space,
that is, k(x,y) = 〈Φ(x),Φ(y)〉 [4]. In practice, the
mapping (1) is approximated based on the eigenspectrum
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of the (N × N ) kernel matrix, K, with elements Kij =
k(xi,xj), i, j = 1, . . . , N , as

Φ(xi) ≈ [

√
λ̃1e1i, . . . ,

√
λ̃NeNi]

T . (2)

where λ̃j is the jth eigenvalue and eji denotes the ith ele-
ment of the jth eigenvector of the matrix K.

In [2] it was shown that an estimate of the eigenfunction
at a new point, y, can be obtained by he following interpo-
latory formula, denoted the Nyström routine

φj(y) ≈
√

N

λ̃j

N∑
i=1

ejik(y,xi). (3)

2.2. The Laplacian PDF distance as a kernel feature
space cost function

Assume that a data set consists of two clusters. Associate
the probability density function p(x) with one of the clus-
ters, and the density q(x) with the other cluster. Let f(x)
be the overall probability density function of the data set. A
distance measure between the two pdfs can be expressed as

DL = − log
〈p, q〉f√

〈p, p〉f 〈q, q〉f
≥ 0. (4)

where the f−1 weighted inner product between p(x) and
q(x) is defined as 〈p, q〉f ≡ ∫

p(x)q(x)f−1(x)dx. By

defining the two functions h(x) = f−

1
2 (x)p(x) and g(x) =

f−

1
2 (x)q(x), the argument of the log in (4) can be ex-

pressed as

L =

∫
h(x)g(x)dx√∫

h2(x)dx
∫

g2(x)dx
. (5)

The distance between the two pdfs is greater the smaller
(5) is. Assume that we have available the iid training data
points {xi}, i = 1, . . . , N1, drawn from p(x), which is the
density of class C1, and the iid {xj}, j = 1, . . . , N2, drawn
from q(x), the density of C2. The union of these two classes
constitutes the overall data set. The relevant functions can
be estimated based on the Parzen window density estimation
technique as

ĥ(x) =
1

N1

N1∑
i=1

f−

1
2 (xi)Wσ2

1
(x,xi),

ĝ(x) =
1

N2

N2∑
j=1

f−

1
2 (xj)Wσ2

2
(x,xj),

and f̂(x) = 1
N

∑N

k=1 Wσ2(x,xk), where W is a Gaus-
sian kernel function whose width is determined by the σ2-
parameter in each case. By inserting these estimates into

(5), it was shown that it has an equivalent expression in a
Mercer kernel feature space as

L =

〈
m1f

,m2f

〉
||m1f

||||m2f
|| ,

where mif
= 1

Ni

∑Ni

l=1 Φf (xl), i = 1, 2, that is, the sam-
ple mean of the ith class in feature space. The Gaussian
Parzen kernel and the Mercer kernel is in fact equivalent in
this case. This cost function is quite interesting. It measures
the distance between the two classes in the feature space.
In that space, the distance is solely based on the means of
the classes. The distance is given by the cosine of the angle
between the class mean vectors.

The mapping Φf was shown to be determined by the
eigenspectrum of the matrix Kf . This matrix can be writ-
ten as Kf = D−

1
2 KD−

1
2 . Here, K is the kernel ma-

trix with elements Kij = K(xi,xj) = W(σ2
t +σ2

s)(xi,xj),
where xi ∈ Ct,xj ∈ Cs, for t, s ∈ {1, 2}. Further-
more, D = diag(d1, . . . , dN ), where di = f̂(xi) =
1
N

∑N

j=1 Wσ2(xi,xj). In fact, Kf is the Laplacian data
matrix.

A key point of this paper is that σ1, σ2 and σ, can be
determined automatically from the training set by optimal
Parzen kernel size selection. Thus, the matrix Kf can also
be determined automatically, and so can the mapping to the
kernel feature space.

Many approaches have been proposed in order to opti-
mally determine the size of the Parzen window, given a fi-
nite sample data set. Silverman [5] discussed this problem,
using the mean integrated square error (MISE) between the
estimated an the actual pdf as the optimality metric, and
proposed the following formula

σopt = σX

{
4N−1(2d + 1)−1

} 1
d+4 , (6)

where d is the dimensionality of the data and σ2
X =

d−1
∑

i ΣXii
, where ΣXii

are the diagonal elements of the
sample covariance matrix.

3. A NOVEL SPECTRAL CLASSIFIER

In this section, we discuss a novel method for developing a
spectral classifier based on the Laplacian pdf distance. We
have available a labeled training data set. For each of the
classes, the optimal Parzen kernel size is determined by (6).
The optimal kernel size for the overall data set is also de-
termined by the same formula. Now, the optimal data trans-
formation into the kernel feature space can be performed by
(2), after having constructed Kf . Note that the dimension-
ality of the data in the kernel space equals the number of
training data patterns. In that space, the training class mean
vectors can be calculated, which can be used to determine
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(a) Test data - labeled.
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(b) Bayes classifi cation of test
data.
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(c) Kernel density classifi ca-
tion of test data.
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(d) Spectral classifi cation of
test data.

Fig. 1. Result of classifying a data set consisting of two Gaussian classes with very different prior probabilities.

the distance between the classes. This is the training phase
of the classifier. For a test data set, which is to be classi-
fied, one data point, y, at a time is mapped into the feature
space by (3). We use a Gaussian kernel also in (3), where
the kernel size, σ, is based on the overall training data set,
since we don’t know which class y belongs to. Thereafter,
the angle between Φ(y) and each of the training class mean
vectors is computed. Finally, y is classified to the class for
which that angle is the smallest. In summary, the proposed
classifier has the following steps

1. Determine σ1, σ2 and σ using (6) in each case.

2. Calculate K, D and Kf = D−

1
2 KD−

1
2 .

3. Eigendecompose Kf , and compute Φ(xi) ≈
[
√

λ̃1e1i, . . . ,
√

λ̃NeNi]
T , ∀i.

4. Find m1 and m2.

5. for i = 1 : number of test points

• Map yi the the kernel space by (3).

• Find the angle θ1 between Φ(yi) and m1 and the
angle θ2 between Φ(yi) and m2.

• Classify: yi ∈ C1 if θ1 < θ2, else yi ∈ C2.

4. EXPERIMENTAL RESULTS

Experiment 1. In the first classification experiment, we clas-
sify data points originating from two Gaussian distributions.
The purpose is to illustrate the risk function property of
the Laplacian spectral classifier. Both distributions have the
same spherical covariance structure with unit variance. The
mean vector of class one in the input space is µ1 = [2 2]T .
The mean vector of the second class is µ2 = [0.6 0.6]T .
The training data is constructed such that class one is rep-
resented by 100 data points, compared to only 5 data points
from class two. Hence, P1 ≈ 0.95, while P2 ≈ 0.05. This

means that the two clusters have overlap and that their prior
probabilities are very different. Based on this training data
set, the new spectral classifier is trained. For comparison,
we construct a traditional Gaussian Bayes classifier. Since
the covariances of the Gaussian classes are equal, this clas-
sifier produces a linear boundary between the classes. We
also train a traditional Parzen kernel Bayes classifier [6], us-
ing (6) to determine the appropriate kernel size for each of
the two classes. Recall that the Bayes classifier is in theory
optimal with respect to the probability of error. The test data
set is drawn from the same Gaussian distributions as for the
training set. The data set consists of 200 data points from
class one, and 10 from class two.

A scatter plot of the labeled test data set is shown in Fig.
1 (a). The squares indicate class one, and the stars class
two. It can be seen that the data sets overlap, such that clas-
sification errors are unavoidable. The classification result
using the Gaussian Bayes classifier is shown in Fig. 1 (b).
It performs very well in terms of classification errors. It
misclassifies only 7 data points. All the misclassified data
points belong to class two. The Parzen kernel Bayes clas-
sifier performs worse, only detecting one of the class two
data points, as shown in Fig. 1 (c). The spectral classifier
obtains the result shown in Fig. 1 (d). The result is signifi-
cantly different from that obtained by the Bayes classifiers.
It classifies correctly 9 of the class two data points. How-
ever, it also erroneously assigns 31 class one data points to
class two. One class two data point is wrongly assigned to
class one. Clearly, the Laplacian spectral classifier empha-
sizes more to classify correctly the least probable class, i.e.
the class two data points in this case. This property may be
useful in many applications.

The results presented in this experiment vary somewhat
depending on the training data and the test data, which is
drawn at random from the Gaussian distributions. However,
these differences are small, and the result presented here is
representative for most cases. It should be mentioned that
for P1 ≈ P2, the classifiers perform almost equally good.
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(a) Training data.
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(b) Spectral classifi cation of test data.
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(c) Kernel density classifi cation of test
data.

Fig. 2. Result of classifying a data set consisting of two ring-shaped classes.

Experiment 2. The purpose of the second experiment is to
show that the spectral classifier can handle highly irregular
data shapes. Fig. 2 (a) shows the labeled training data set,
which consists of two ring-shaped classes. There are 100
training samples, 6 from the inner-most ring and 94 from
the outer-most ring. Fig. 2 (b) shows the spectral classifica-
tion result for a test set consisting of 844 test samples, drawn
from the same ring-shaped distributions. The classification
result is nearly completely correct, for this very challeng-
ing data set. The classification result is fairly stable over
repeated experiments. For comparison, Fig. 2 (c) shows the
classification result using the Parzen kernel Bayes classifier.
Again, it has problems with the sparse class.

Experiment 3. In this experiment, we classify a breast-
cancer data set into the two classes benign and malignant.
The purpose is to show that the proposed classifier also
performs well on a real data set of higher dimensionality
than for the previous two data sets. The Wisconsin Breast-
Cancer (WBC) database is the source of this dataset, which
consists of 683 data points (444 benign and 239 malignant).
WBC is a nine-dimensional dataset. For the training data,
100 data points were selected at random from the data set.
We performed the classification 20 times, each time select-
ing different training data at random. The test set consisted
in each case of 583 data patterns. The average correct classi-
fication rate was 96.0%, with a standard deviation of 0.01%.
The Parzen kernel Bayes classifier performs almost equally
good in this case, probably because the prior probabilities
are not extremely different.

5. CONCLUSIONS

We have presented a new fully automatic (no user-specified
parameters) spectral classifier based on the Laplacian pdf
distance. The training data set is optimally mapped to the
feature space using the eigenspectrum of the Laplacian data

matrix. New data points are mapped to the feature space by
the Nyström routine, where they are classified based on the
angle with the means of the transformed training data. The
new classifier has been shown to perform well on irregular
and real data. Also, it exhibits the interesting property that
it emphasizes to classify correctly the least probable data
points.

As for most kernel-based methods, proper kernel size se-
lection may be problematic in very high-dimensional data
spaces.
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