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ABSTRACT

An assessment of the performance of the pipelined recurrent neu-
ral network (PRNN) is provided from two aspects, a quantitative
one based on the prediction gain and a qualitative one based on ex-
amining the changes in the nature of the processed signal. This is
achieved by means of the recently introduced ‘Delay Vector Vari-
ance’ (DVV) method for phase space signal characterisation. A
comprehensive analysis of this approach on both linear and non-
linear benchmark signals suggests that the PRNN not only out-
performs a single recurrent neural network (RNN) in terms of the
prediction gain but also has better or similar performance in terms
of preserving the nature of the processed signal.

1. INTRODUCTION

Pipelined recurrent neural networks1 [1] (PRNN)s have been re-
cently proposed for adaptive signal processing applications [2] and
have been shown to be able to deal with nonlinear as well as non-
stationary signals. This is achieved with fairly high computational
efficiency as compared to a single network with the same number
of neurons. Considerable research has been conducted towards
improving the performance and computational efficiency of these
networks, mostly concentrating on devising novel learning algo-
rithms for the nonlinear predictor within the PRNN architecture,
namely for modular nested recurrent neural networks [3, 4].

1.1. Some Background Notions

By the signal ‘nature’, we refer to the linear2, nonlinear, deter-
ministic3 and stochastic signal behaviour. For simplicity, we shall
restrict ourselves only to the first two properties. Characterisa-
tion of signals based on their nature is still emerging, however,
in some modern machine learning and signal processing applica-
tions, it is essential to characterise the signal behaviour, since the
linear, nonlinear, deterministic or stochastic nature of a signal can
convey important information about the underlying signal gener-
ation mechanism. For instance, in the electrocardiogram (ECG)

1PRNN is a modular neural network, and consists of a certain number
M of nested recurrent neural networks (RNNs) as its modules, with each
module consisting of N neurons. All the modules operate using the same
weight matrix W, as shown in Figure 1.

2A linear signal is the one that is generated by a linear time-invariant
system, driven by white Gaussian noise. A signal that cannot be generated
this way is considered nonlinear [5].

3A signal is considered deterministic if it can be precisely described by
a set of equations. Otherwise, it is stochastic.

and heart rate variability (HRV) analysis, where the change in the
signal nature from the linear stochastic to nonlinear deterministic,
provides an indication of health hazard [6]. Similar phenomena
have been reported in the analysis of air pollutants [7] and brain
electrical activity [8].
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Fig. 1. Pipelined recurrent neural networks.

1.2. The PRNN Architecture

Besides its modularity, it is not immediately obvious that the PRNN
performs nesting of its constituting modules, and at the same time
data-reusing. Nesting can be functionally described by the PRNN
output function4

y1,1(k) =Φ
(
s(k − 1), Φ(s(k − 2), · · · , (1)

Φ(s(k − M), · · · yM,1(k − M))) · · · )

where Φ is the nonlinear activation function which is identical for
all the modules, yM,1(k) is the output of the M th module of the
PRNN and s is the external input vector to the neurons. This nest-
ing property (1) gives the PRNN its enhanced computing power
as compared to the conventional RNN [4] and its increased ability
to model the nonlinearity within the signals. The cost function for
the PRNN is a weighted sum of squared errors at the output of ev-
ery module of the PRNN. Hence, at time instant k, the incremental
update for the lth weight of neuron n is as follows [1]:

∆wn,l(k) = −2η

M∑
i=1

λi−1ei(k)
∂ei(k)

∂wn,l(k)
(2)

where η is the learning rate. To understand the operation of the
PRNN, it is important to notice that, at time instant k:

4For the sake of simplicity, the functional dependence of the weight
matrix W to the nested nonlinearity was omitted.
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• The output of the first module, y1(k), is in fact the predic-
tion of s(k). The prediction error e1(k) = s(k) − y1(k)
only partially contributes to the weight update (2).

• The output of the ith module, yi(k) is in fact the prediction
of s(k − i + 1), thus ei(k) = s(k − i + 1) − yi(k) again
partially contributes to the weight update (2).

In this way, the time sample s(k) influences the weight update (2)
exactly M times, inducing an effect similar to that of a posteriori,
that is, data-reusing algorithms [9, 10] when applied to standard
filters. Furthermore, module M will benefit most from this data-
reusing behaviour, as it receives the highest number (M ) of data-
reusing ‘iterations’ before predicting s(k).

Previously, we have investigated the qualitative performance of hy-
brid filtering architectures [11] as well as data-reusing (DR) algo-
rithms [12], where we found that in hybrid filtering architectures
a high prediction gain could bring the side effect of a change in
the nature of the processed signal and that data-reusing algorithms
not only exhibit an advantage in the performance but also better
preserve the nature of the processed signal than the standard al-
gorithms. Notice that data-reusing within the PRNN is embodied
within its architecture, rather than through iterations on the cur-
rent weight update. At the same time, the PRNN, as originally
introduced in [1], together with a tapped-delay-line (TDL) filter
when applied, represents a hybrid filter, which consists of a non-
linear adaptive filter followed by a linear filter. Therefore, there
is a need to address this issue in this modular nested hybrid archi-
tecture. The modular hybrid PRNN was introduced with the idea
that the nonlinear part of the network would perform nonlinear
adaptive prediction whereas the linear part would perform linear
prediction. We therefore employ the novel results in signal nature
characterisation to investigate the way this hybrid modular nonlin-
ear filter operates. Qualitative analysis of the change in the nature
of the processed signal, both along the modules and for PRNNs
of different size is performed. This will shed new light onto the
performance of hybrid modular filters with implicit data-reusing
capacities.

2. QUALITY ASSESSMENT TOOL – DELAY VECTOR
VARIANCE METHOD

Several methods for detecting the nature of a signal have been pro-
posed over the past few years, which include the Deterministic ver-
sus Stochastic (DVS) plots [13], the Correlation Exponent and δ-ε
method [14]. The recently introduced DVV method [5] is shown
to be well suited for applications in the signal processing context,
since it simultaneously examines both the nonlinear and determin-
istic nature of a signal. This method investigates the local pre-
dictability of a signal in the phase space and can be summarised as
follows:

For a given embedding dimension m (which, for convenience, was
set to 2 in all of our simulations):

• Generate delay vectors (DVs):
x(k) = [xk−m, . . . , xk−1]

T and the corresponding target
xk,

• The mean µd and standard deviation σd are computed over
all pairwise Euclidean distances between DVs, ‖x(i)−x(j)‖
(i �= j),

• The sets Ωk(rd) are generated such that Ωk(rd) = {x(i)|
‖x(k) − x(i)‖ ≤ rd}, i.e., sets which consist of all DVs
that lie closer to x(k) than a certain distance rd, taken from
the interval [max{0, µd −ndσd}; µd +ndσd], where nd is
a parameter controlling the span over which to perform the
DVV analysis,

• For every set Ωk(rd), the variance of the corresponding
targets, σ2

k(rd), is computed. The average over all sets
Ωk(rd), normalised by the variance of the time series, σ2

x,
yields the ‘target variance’, σ∗2(rd):

σ∗2(rd) =
1
N

∑N
k=1 σ2

k(rd)

σ2
x

(3)

As rd increases, the target variance smoothly converges to unity.
This is because all DVs start to belong to the same universal set,
and the variance of targets is equal to the variance of the time se-
ries.

To illustrate the meaning of “signal nature”, consider a benchmark
linear signal (AR(4)), given by [15]

x(k) = 1.79 x(k − 1) − 1.85 x(k − 2) + 1.27 x(k − 3)

− 0.41 x(k − 4) + n(k) (4)

and a benchmark nonlinear signal (x-component of Henon map),
given by [16]

xn = 1 − a x2
n−τ + yn−τ

yn = b xn−τ (5)

where τ is the time lag which was set to unity, and parameters a
and b were set to 1.4 and 0.3, respectively. We will refer to this
signal as the Henon map though only the x-component of Henon
map is used in the following simulations.

To indicate nonlinearity within a signal, the DVV test is also per-
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Fig. 2. Nonlinear nature of signals. Left: linear signal (4). Right:
nonlinear signal (5). Error bars denote the standard deviation of
the target variances of surrogates.

formed on a set of surrogate data5 using the same parameter setting
as for the original signal. Next, the DVV plot (target variance σ∗2

versus standardised distance rd−µd
σd

) of the original time series is

plotted against the average of that for surrogate data6. These plots

5Surrogate data are nonparametric linear versions of the original data.
6In fact, target variance (σ∗2) of the original data is plotted against

the mean of the target variance of N surrogate data, for all corresponding
distances ( rd−µd

σd
).
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can be conveniently combined within a scatter diagram, where the
horizontal axis corresponds to the target variance of the original
time series, and the vertical axis to that of the surrogate time se-
ries. If the surrogate time series yield target variance similar to
that of the original time series, the ‘DVV scatter diagram’ coin-
cides with the bisector line, and the original time series is judged
to be linear, as shown in the left diagram of Figure 2 (for the lin-
ear signal (4)). If not, then the original time series is judged to
be nonlinear, as depicted in the right diagram of Figure 2 (for the
nonlinear signal (5)).

3. THE PERFORMANCE OF THE PRNN

In this section, we investigate the quantitative and qualitative per-
formance of the PRNN, based on prediction of two benchmark
signals (4) and (5). To assess the quantitative performance, we use
the common one-step forward prediction gain Rp, defined as

Rp = 10 log
( σ̂2

s

σ̂2
e

)
dB (6)

which is a logarithmic ratio between the estimated signal variance
σ̂2

s and estimated prediction error variance σ̂2
e . As for assessing

the qualitative performance, that is, the possible change in signal
nature, we compare DVV scatter diagrams of the outputs of the
PRNN with those of the original signal. This is achieved by aver-
aging 100 independent trials. In the experiments, the real time re-
current learning (RTRL) algorithm, was used to train RNNs within
the PRNN, and the activation function of a neuron was chosen to
be the logistic function

Φ(v) =
1

1 + e−bv
(7)

with β set to 1.0, forgetting factor (λ) set to 0.99 and the number
of neurons (N ) set to 5 as well as the tap length of external input
(p) set to 5, whereas the number of modules (M ) varies with indi-
vidual case and will be addressed later.

Figure 3 illustrates both the quantitative (value of Rp) and qual-
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Fig. 3. Qualitative and quantitative comparison of the PRNN with
different number of modules for the one-step ahead prediction of
the linear benchmark signal (4). M varies from 1 (left diagram) to
3 (middle diagram) and 5 (right diagram).

itative (DVV scatter diagram) performance of the PRNN applied
for prediction of linear benchmark signal (4). The tile diagram
in Figure 3 illustrates the DVV scatter diagrams for outputs of
PRNNs with different number of modules (1, 3, 5)7. From the
Figure, in all the cases, the nature of the AR(4) signal were pre-
served. This is illustrated by the fact that all the DVV scatter dia-
grams in Figure 3 lie on the bisector line, which was also the case
for the original signal (4) (left diagram in Figure 2). In terms of

7These cases were chosen to illustrate that the PRNN performs better
than a single RNN. There is not much improvement in the prediction gain
when the number of modules is further increased.

the prediction gain, PRNN with 5 modules performed best8, and
as expected, prediction gain Rp increases with the increase in the
number of modules increases, which is the evidence that PRNN
performed better than a single RNN.
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Fig. 4. Qualitative and quantitative comparison of individual mod-
ules in the PRNN of 3 modules for the one-step forward prediction
of the linear benchmark signal (4).

Figure 4 illustrates more detailed results for a single PRNN con-
sisting of three modules (module 3, module 2, module 1 from left
to right in Figure 1, respectively predicting s(k − 2), s(k − 1),
s(k)) on the performance of predicting the linear benchmark sig-
nal (5). In Figure 4, the left part was the DVV scatter diagram for
the third module of PRNN (leftmost module in Figure 1), the mid-
dle one was that for the second module and the right one was that
for the first module, namely, the actual output of the PRNN (right-
most module in Figure 1). From the Figure, the signal nature was
well preserved by all three modules. However, when compared
with the DVV scatter diagram for the original signal (left diagram
in Figure 2), there is evidence of some nonlinearity in the left two
diagrams, judged by the fact that DVV scatter diagrams for these
two modules were not as perfectly on the bisector line as the that
for the first module. As far as prediction gain is concerned, module
3 performed best and module 1 the worst. This can be explained
in the context of data-reusing property of the PRNN architecture,
which has been described in the previous section: due to the fact
that all the modules share the same weight matrix, before module
i was trying to predict s(k − i + 1) at time instant k, the PRNN
system already had some information and weights were already
optimised to a certain extent for the forthcoming prediction. That
is why the distant modules from the output of the PRNN have bet-
ter prediction gain.

Figure 5 illustrates a similar experiment conducted on the predic-
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Fig. 5. Qualitative and quantitative comparison of the PRNN with
different number of modules for the one-step forward prediction
of the nonlinear benchmark signal (5). M varies from 1 (left di-
agram) to 3 (middle diagram) and 5 (right diagram). Dotted line
above indicates the DVV scatter diagram for the original signal,
whereas solid line below indicates that for the filtered one.

8The PRNN performance depends also on the value of N and p, which
in this case were chosen to be the same for all three situations.
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tion of the nonlinear benchmark signal (5) with the same setting
as in the previous experiment. From the Figure, in all the cases,
the filters were not able to properly capture the the nature of the
Henon map. This is illustrated by the fact that the DVV scatter
diagram for the filtered signal (solid line) did not get close enough
to that for the original signal (dotted line). However, we can still
see some nonlinearity in the filtered signal. In terms of the predic-
tion gain, PRNN with 5 modules performed best, and as expected,
prediction gain Rp increased with the increase in the number of
modules, which again proved that PRNN performed overall better
than a single RNN.

In the light of our recent work on the quality assessment of hy-
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Fig. 6. Qualitative and quantitative comparison of PRNN without
the FIR filter (left) and with the subsequent FIR filter (right) for
the one-step forward prediction of the nonlinear benchmark signal
(5). Dotted line indicates the DVV scatter diagram for the original
signal, whereas solid line indicates that for the filtered one.

brid filters [11], we conducted one more experiment on the hybrid
PRNN, realised by cascading a linear finite impulse response (FIR)
filter after the PRNN. Figure 6 illustrates the results of such an ex-
periment. The standard least mean square (LMS) was used to train
the linear filter with tap length set to 8. In the Figure, the qualita-
tive performance of PRNN without the subsequent linear FIR filter
is shown in the left diagram while that of the hybrid filter is shown
in the right diagram. It is clear that after filtering by the FIR filter,
the nature of the Henon map time series was better preserved, as
indicated by the fact that two curves, namely two DVV scatter di-
agrams for the original signal and the output of the PRNN, in the
right diagram became closer to each other. However, in terms of
the prediction gain, a stand-alone PRNN outperformed the hybrid
PRNN filter, which conforms to our previous observation that in
some cases a high prediction gain brings the side effect of linearis-
ing the signal nature. The reason for the weak prediction perfor-
mance is that Henon map is very nonlinear, seen from fact that the
DVV scatter diagram deviates from the bisector line greatly, which
makes it difficult to model. Moreover, we chose this signal to show
the principles and did not optimise the PRNN parameters.

4. CONCLUSIONS

In this paper, we have shown that the pipelined recurrent neu-
ral network (PRNN) outperforms single recurrent neural network
(RNN) on both linear and nonlinear benchmark signals with higher
prediction gain and possibly better qualitative performance in terms
of signal nature preserving. Due to the data-reusing effect embod-
ied in the PRNN architecture, it is shown for the distant modules
from the output of PRNN to have higher prediction gain than the

output module. Besides, as an extension to our previous findings
on hybrid filters, we have also conducted an experiment on the
PRNN followed by a linear FIR filter, and the result is consistent
with our previous findings that a quest for higher prediction gain
can sometimes have an effect of linearising the signal nature. This
is not preferred in the environments where the nature of a signal
conveys some important information, e.g., about health hazards.
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