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ABSTRACT

Natural gradient learning has been shown to avoid singular-

ities in the parameter space of multilayer perceptrons. How-

ever, it requires a large number of additional parameters

beyond ordinary backpropagation. This article describes a

new approach to natural gradient learning in which the num-

ber of parameters necessary is much smaller than the natu-

ral gradient algorithm. This new method exploits the alge-

braic structure of the parameter space to reduce the space

and time complexity of the algorithm and improve its per-

formance.

1. INTRODUCTION

Amari and his colleagues have developed natural gradi-

ent learning for multilayer perceptrons [1, 2, 3], which in-

stead of the steepest descent direction, uses a Quasi-Newton

method [4] that exploits the Riemannian metric tensor of

the underlying parameter space as the approximation to the

Hessian. In the case of multilayer perceptrons, this metric

tensor is the Fisher Informationmatrix evaluated for the cur-

rent parameter. Since the Fisher Information matrix is the

expected value of the Hessian matrix, it fits very nicely into

a Quasi-Newton optimization framework.

However, the problem with natural gradient learning is

that the Fisher Information matrix must be inverted. Also,

for large networks, the algorithm becomes computationally

intractable because of the large number of additional pa-

rameters in the Fisher Information matrix that is required

during training. This problem can be mitigated by a new

formulation of the Fisher Information matrix for multilayer

perceptrons.

This article describes this new formulation. By picking

an inner product for the parameter space and inducing a

norm, a Sobolev Gradient [5] may be formulated such that
the Fisher Information matrix has much smaller dimensions

than in the Adaptive Natural Gradient algorithm [2] and, as
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a result, the learning algorithm performs better is more ro-

bust to initial values and noise.

2. A NEW PARAMETERIZATION

Let the random variable
�
be the feature map of a multi-

layer perceptron � . Let the function � � � � � �
be the output

of the perceptron when given
�
as the input. Let the ran-

dom variable � be the desired output of the perceptron and
the random variable� � � 	 � � � � � �

(1)

be the output error of the perceptron. Let � 
 be the optimal
perceptron such that � � 
� � � � � �

is minimized.

2.1. Mapping to an Anti-Diagonal Block-Matrix

Amultilayer perceptronwith � layers is parameterized by �
matrices � 
 � � � � � � � � � � ; each matrix represents the con-
nection weights of the layer.

Let � be a mapping of the � matrices into a block matrix
such that � 
 � � � � � � � � � � lie on the anti-diagonal of the
block matrix.

� � � 
 � � � � � � � � � � � � �����
� � � � � � 
� � � � � � �
...

. . .
...

...� � � � � � �
� ���� � (2)

This structure is similar in form to the weighted adjacency

matrix of an � -partite graph [6].
2.2. The Inner Product of Two Perceptrons

An inner product of two perceptrons � �� � � 
 � � � � � � � � � � �
and � � � � � 
 � � � � � � � � � � �

is  
� � � ! � �" # $ 
 % & � � # � '# � � (3)
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2.3. The Induced Norm of a Perceptron

Similarly, the induced norm of this perceptron inner product

for � � � � � � � � � � � � � � � 	 

is

� � � � �

� 	� � � � � � � � � � �� 
 � (4)

This norm is similar to the Frobenius norm of matrices [7].

It is now possible to write the Sobolev gradient of a mul-

tilayer perceptron.

3. SOBOLEV GRADIENT

Let � � � � � � � � � 
 � � � � � � � 
 � � � � � � � � � � � 
 �
be � obervations

of the random tuple � � � � 

. To simplify presentation, as-

sume that there are only two layers in the percptron ( � � �
).

Then the norm of the error of training example  will be! � � � � � � � � 
 � � � � " � � # � � � � � 
 � �
(5)

where # is the activation function of the hidden layer.
3.1. The Directional Derivative of

!
The directional derivative of

!
with respect to � in the di-

rection of $ is! % � � � � � � � � 
 $ � & ' () * + ! � � � � � � � � , - $ 
 " ! � � � � � � � � 
- � (6)
The Sobolev gradient of

!
with respect to � is the percep-

tron � . ! 
 � � � � � � � � 

such that for any perceptron $! % � � � � � � � � 
 $ � /

$ � � . ! 
 � � � � � � � � 
 0 � (7)

3.2. The Sobolev Gradient of a Two-Layer Perceptron

Let � � 1 + 2 32 4 + 5 and $ � 1 + 6 36 4 + 5 , then the directional
derivative is! % � � � � � � � � 
 $ � & ' () * + ! � � � � � � � � , - $ 
 " ! � � � � � � � � 
-� & ' () * + 7� - � � � " � � � , - 8 � 
 9 � � � � , - 8 � 
 � � 
 � �

" & ' () * + 7� - � � � " � � 9 � � � � � 
 � � �
Substituting the first order Taylor series,9 � � � � , - 8 � 
 � � 
 � 9 � � � � � 
 , - 9 % � � � � � 
 8 � � �
and letting : � � 9 � � � � � 


, ; � � � � " � � : �
, and < � �= 9 % � � � � � 
 > � � �� ; �

,! % � � � � � � � � 
 $ � "
/

� � 9 % � � � � � 
 8 � � � , 8 � : � � ; � 0� /
" � � 9 % � � � � � 
 8 � � � � ; � 0 ,

/
" 8 � : � � ; � 0� ? @ A 8 �8 � A B � @ A " < � � ��" ; � : �� A B C �

By arranging the product to be the inner product of two

perceptrons the Sobolev gradient follows as

� . ! 
 � � � � � � � � 
 � @ D " < � � ��" ; � : �� D B � (8)

where < � � = # % � � � � � 
 > � � �� ; �
is the backpropagation er-

ror and : � � # � � � � � 

is the activation of the hidden units.

3.3. Perceptrons With More Than One Layer

Extending this procedure to perceptrons where � E �
is

done by taking the outer product of the input to a layer with

its backpropagation error.

4. FISHER INFORMATION MATRIX

The Fisher Information Matrix isF � � 
 � G = � . ! 
 � � � � � � 
 � . ! 
 � � � � � � � 
 >� @ G � � � � � H H � � DD G � � I � � J J � � B (9)

where
H � = # % � � � � 
 > � � �� J

is the backpropagation er-

ror and I � # � � � � 

is the hidden unit activation. (The

elements of this block-diagonal matrix are similar to the

fourth-order cumulants used in Blind Source Separation

[8].)

The fisher information matrix is used in the update of the

perceptron weights as the Riemannian metric tensor [9].� K L � � � K " M K F N � � � K 
 � . ! 
 � � K 

. (10)

These can be simplified because of the diagonal block struc-

ture of
F � � 


.� O K L � P� � � O K P� , M K QF O K P� < K � � K (11)� O K L � P� � � O K P� , M K QF O K P� ; K : � K (12)

where M K is the learning rate for the connection weights.
4.1. Recursive Estimation

A recursive estimator can be used for each block of the

Fisher Information Matrix and the matrix inversion lemma

[10] applied to each block so that the update equations are:QF O K L � P� � � 7 , R K 
 QF O K P� " R K � � K � � QF O K P� < K < � K QF O K P�
(13)QF O K L � P� � � 7 , R K 
 QF O K P� " R K � : K � � QF O K P� ; K ; �K QF O K P�
(14)

where QF � S � are the estimators of the inverse blocks and R K
is the learning rate for the Fisher Information Matrix [2].
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4.2. Reduced Complexity

If � is the number of outputs, � the number of inputs and� the number of hidden units, then the top-left block of
the Fisher Information Matrix is an � � � matrix and the
bottom-right block is an � � � matrix. With previous

natural gradient algorithms, the Fisher Information is an� � � � � � � � � � � � �
matrix. So the complexity of each step

of this algorithm is � � � � � � � �
where the Adaptive Natural

Gradient method has a complexity of � � � � � � � � � � �
.

5. EXPERIMENTAL RESULTS

5.1. Mackey-Glass Chaotic Time Series

The Mackey-Glass chaotic time series regression problem

was used to test the new learning algorithm. The Mackey-

Glass chaotic time series [3] is generated from

	 � 
 � �
� � 
 � � 	 � 
 � �


 � � 	 � 
 � � �
�

� � � 	 � 
 � � �
� � � � � (15)

with 	 � 
 � �
� � �
and 	 � 
 � � 


for all 
 � 

.

The input to the neural network are the four series values

at 	 � 
 �
, 	 � 
 � � �

, 	 � 
 � �
� �
, and 	 � 
 � � �

�
. The output of the

neural network will be trained to output 	 � 
 � � �
. The net-

work was trained with 500 samples of the data generated at
 � � 

� � � 
 � � � � � � �


 

. The network was then tested against

500 samples generated where 
 � � 
 

� � � 
 
 � � � � � � � � 
 


.

The algorithm described in this article (BNGL) was run

and compared with the results of ordinary gradient learn-

ing (OGL) and that of Adaptive Natural Gradient Learning

(ANGL) 1.

5.1.1. Simulations

The simulation was done such that each algorithm was

started with the same network size and initial connection

weights. The training examples were selected randomly and

then input to each neural network training algorithm. The

networks started at the same point and shown the same data

in an identical random order.

Only the initial values of the Fisher Information matri-

ces and the learning rate values were tweaked so that each

algorithm would perform the best that could be determined.

Each algorithm was run through 100 epochs of the train-

ing set.

In figure 1 it can be seen that BNGL performs very well.

As was mentioned in [2], the adaptive natural gradient is

very sensitive to initial conditions and can easily become

unstable. However, this new method has been found by

these simulations to be very stable and robust to varying

initial conditions.

1BNGL stands for Bastian Natural Gradient Learning and because B

comes after A, since it is largely based on Adaptive Natural Gradient

Learning

Fig. 1. Mean-squared error per training epoch

OGL BNGL ANGL

Learning rate 0.1 0.005 0.0001

Momentum rate 0.1 � � 
 � � 

Hidden nodes 10 10 10

Network parameters 61 61 61

Additional parameters 11 101 3721

Training data MSE 0.029 0.011 0.17

Test data MSE 0.029 0.012 0.30

Table 1. Performance Comparison of the Learning Algo-
rithms for the Mackey-Glass Time Series

5.2. Fisher Iris Data Set

The Fisher Iris data set [11] consists of an iris species (Se-

tosa, Versicolor, and Virginica) and four measurements of

a specimen of that species: petal length, petal width, sepal

length and sepal width. The perceptron is to learn to classify

the species based on the measurements.

Figure 2 shows some erratic behavior as the algorithm

progresses. This occurs as the algorithm avoids singulari-

ties, which causes the resulting perceptron to wrongly clas-

sify some patterns. The algorithm weaves back and forth,

but on a logarithmic plot it seems to become unstable. How-

ever, by running the algorithm in excess of 1,000,000 learn-

ing cycles this behavior disappears.

5.2.1. Simulations

The data set consists of 150 examples including 50 of each

species. The data was whitened by removing the mean of

each measurement and then, using the Cholesky decompo-

sition [10], dividing the data set by the square root of the

covariance matrix. The data set was split into a training

set with 30 examples of each species (90 total) and a test
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Fig. 2. Cross-entropy of training epochs for Iris problem

OGL BNGL ANGL

Learning rate 0.02 0.005 0.001

Momentum rate 0.0 � � � � � �
Hidden nodes 4 4 4

Cross-Entropy 0.028 0.0016 1.096

Errors 9 4 60

Table 2. Performance Comparison of the Learning Algo-
rithms for the Iris Problem

set with 20 examples of each species (60 total). OGL and

BNGL were each run through 100 learning cycles.

6. CONCLUSION

By employing the Sobolev gradient, a new learning algo-

rithm was devised that performs very well and requires

fewer parameters than the Adaptive Natural Gradient Al-

gorithm. The algorithm, as described in this article, is easy

to implement and requires no matrix inversions.
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A. EFFICIENT ESTIMATION OF PARAMETERS

An estimation algorithm is said to be efficient [10, 12, 13] if
for all � :� � � � � � � � 	 � 
 � � � � 
 � � � � � �
Solving for, � 
 ,

� 
 � � � 	 � � � � � � � � � 
 � � � � �
from this fixed point formula, a recursive update formula is

derived:

� � � � � � � 	 � � � � � � � � � � � 
 � � � � �
.

Hence,
� � � � � �

is the Riemannian metric at � [9].
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