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ABSTRACT

Conventional assumptions of square mixing matrix and 

negligible noise adopted in blind signal separation do not always 

correspond with real applications. Signal detection from a small 

number of sensors is often required in signal and image 

modeling and biomedical applications. This paper proposes a 

new algorithm to accurately estimate signals from 

underdetermined mixtures with less restrictions and assumptions 

compared with existing techniques. The strength of this 

algorithm is that it does not adopt the conventional assumptions 

on the mixing, signals and noise. The algorithm is capable of 

separating orthogonal and non-orthogonal mixtures of both 

sparse and non-sparse signals with additional Gaussian or non-

Gaussian noise. This algorithm is also applicable to separating 

time-varying as well as instantaneous mixtures. Simulation 

results demonstrate the efficacy of the proposed algorithm for 

separation of time-varying mixtures in the presence of noise.   

1. INTRODUCTION 

In signal separation of linearly mixed signals, the mixing model 

is as below 

x Ms  (1) 

where 1

T

ms ss , 1

T

nx xx ,  and M  represent 

the original source signals, observed signals, noise and the 

mixing matrix respectively.  Underdetermined mixture of signals 

where m n , i.e. the number of source signals is greater than 

the number of observed signals are becoming more frequently 

addressed in Blind Signal Separation [1, 2]. A common feature 

in algorithms for solving underdetermined mixture is the 

exploitation of sparse representation of the source signals [3]. 

High sparsity is an essential requirement by these algorithms for 

good separability of source signals. However, the signals in 

some applications are non-sparse. Non-sparse signals are 

encountered in semireflective layer separation [4] and binary 

data in digital communication. In cases where the requirement of 

sparsity is not satisfied, non-sparse signals will need to be forced 

into a sparse representation via an appropriate transform prior to 

execution of the algorithm. Coefficients of wavelet and Fourier 

transformation do not produce sufficiently sparse signals to 

estimate signals. The solution must be the sparsest of all 

representations where a minimum number of non-zero 

coefficients possess a significant higher probability. This 

depends crucially on a measure that defines ‘significant higher 

probability’ and therein raises the conundrum of where the 

boundary between ‘significant’ and ‘not significant’ lies.  

The measure of sparseness also needs to be carefully 

chosen in noisy data as slight additional noise will make the data 

completely non-sparse and kurtosis measures are to be avoided if 

it is not certain that the distribution is unimodal and symmetric 

[5]. The proposed algorithm avoids these pitfalls by not 

requiring sparseness of signals and is applicable for multimodal 

and non-symmetric distributions. Some algorithms disregard the 

presence of noise at the expense of accuracy. In practical 

scenarios, noise is usually present and should be taken into 

account when defining the mixture model which the formulation 

of the algorithm is based upon. Gaussian noise is often assumed 

in cases where the presence of noise is acknowledged. This 

assumption leads to inaccurate separation of mixtures with non-

Gaussian noise. The proposed algorithm adopts a noise reduction 

model of wider coverage for both Gaussian and non-Gaussian 

noise.

2. FORMULATION OF ALGORITHM 

The problem of blind signal separation of underdetermined 

mixtures can be solved by estimation of the unknown parameters 

M  and s  conditional upon x . This problem is explicitly 

described by the following expression: 

,

ˆ ˆ, arg max ,p
M s

M s M s x  (2) 

The estimation involves the process of formulating a prior 

density function of the original signals and mixing matrix. 

Multiplying these priors with the observed data conditional upon 

the original signals and mixing matrix, ,p x M s  we obtain 

the posterior density function defined below:  

, ,p p p pM s x x M s M s  (3) 

where p s  and p M  represent the prior probability density 

function for s  and M  respectively. 

2.1. Mixing Matrix Estimation 

The estimate for M  can be obtained according to the following: 

ˆ ˆ ˆ ˆ ˆ,p p p dM x M x M s s  (4) 
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The Generalized Gaussian Distribution (GGD) is adopted for the 

approximation of ˆ ˆ,p x M s :

ˆ ˆ
ˆ ˆ exp

1
2

r
p

x Ms
x Ms  (5) 

where ( ) ,  and 
1 3

 represent the 

standard Gamma function, parameter controlling density shape 

and generalized variance respectively. GGD allows the 

approximation of a wide range of noise statistics by varying 

to represent Gaussian and non-Gaussian subject to the constraint 

0 .

The estimate of  can be obtained via the first order 

variation of ˆln ( )p  approximated from the following update 

equation for :

1t t t t  (6) 

( ) ( )

2

ˆ ˆ0.1 1 ln
t t

t t t
t

t
 (7) 

where t  is the learning rate for  and ˆ ˆˆ x Ms . Taking 

the logarithm of (4), we can recast the estimate as: 

1 1
ˆ ˆ ˆˆ ˆln ln ln ln

2
p p pM x M s x Ms H  (8) 

21
ˆ ˆ ˆˆ ˆ1

T
diagH M x Ms M s  (9) 

where ˆ ˆln
ˆ ˆT

d
p

d d
s s

s s
. Following the natural gradient 

approach, we arrive at the update equation: 

2 1

1

ˆ1

ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ1

1
ˆ ˆ

T

T

T

m

T
t

diag t t

t t t t t

M

x M s M H s

M M M M M

s s  (10) 

where 
1

T

k
 and 

11
ˆln

2
m mm

m

d
p

d
H s

s
.

2.2. Source Signal Estimation 

Therefore, the estimate of s given x is defined as: 

ˆ

ˆˆ ˆ ˆarg max ln lnp p
s

s x Ms s  (11) 

The proposed algorithm is executed in the context of the Quasi-

Newton update algorithm. The Quasi-Newton update retains the 

local convergence speed of the Newton method without the need 

to calculate the Hessian matrix required by the Newton method. 

Instead, it approximates the Hessian matrix using the past 

gradient information and iteratively updates the approximation 

using the current/latest gradient. This additional computation 

cost per iteration required by Quasi-Newton methods is 

compensated by a convergence far superior than gradient 

descent methods. The update for ŝ  is then: 

2

1

1

ˆ ˆ1
ˆˆ

ˆ ˆˆ ˆˆdiag diag

ˆ ˆˆ

ˆT

T

T

s

s

d J
k k

d

k

dJ

ds
s s

ss

s M M s

M s

 (12) 

where 
1 2

ˆ ˆ ˆ ˆ
T

m
s s ss ,

ˆ ˆln
ˆ

i i

i

d
s p s

ds
,

1 2
ˆ ˆ ˆˆ

T

n

and ˆ ˆln
ˆ

d
p

d
. M  is not necessarily orthogonal and 

2

ˆ ˆ ˆˆdiag diag
ˆˆ

T

T

d J

d
M M s

ss
.

The prior density is modeled by Gaussian Mixture Models 

(GMM) which is capable of modeling both unimodal and 

multimodal densities: 

1 1ˆ ˆ
2

1
221 1

ˆ ˆ( )

2

TQ Q
q q qq

q q q R
q q

q

p p e
s µ s µ

s s

  (13) 

Based on the GMM (13), we obtain the estimates: 

1

1

ˆ ˆ( ) ( )

ˆ( )
ˆ( )

Q

q q q q q

q

p

p

s s µ

s
s

 (14) 

1

1

2

( )

ˆ( )
( )

Q

q q q q

q

p

p

s

s
s

 (15) 

1
( ) ( ) ( ) ( ) ( )

T T

q q q
p ps I s µ s s µ s  (16) 

where R  is the dimension of s . q , qµ  and q  are the 

mixture weight, mean and covariance matrix defining the GMM. 

Parameters of GMM are estimated from the EM algorithm which 

inherently satisfies the probabilistic constraints of the GMM. 

The parameters are adaptively estimated as: 
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ˆ( ) 1 1
q q N q

N p Ns  (17) 

1

1

1

1

ˆ ˆ ˆ ˆ

ˆ ˆ

N

N q N n q n

n

q N

q N q n
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p p

p p

s s s s

s s
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where 

1

1

ˆ1
1

1

N

q q n

n

N p
N

s ,
1

N
 and 

0.05 0.2 .

The first and second order derivative of the noise term in 

(12) can consequently be calculated according to (20) and (21) 

as follows: 

2
ˆ ˆ

ˆ  (20) 

2

2 2
ˆ

ˆ ˆ ˆ1 2  (21) 

In summary, the algorithm is applicable for both stationary and 

time-varying signals by adaptively estimate M̂  from (10) and 

ŝ  from (23): 

ˆ ˆ1 sk k ks s          (22) 

1

1
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M M
s

s s µ

M
s

         (23) 

3. RESULTS 

To demonstrate the efficacy of the proposed algorithm, we 

compare its performance against the algorithm by Amari [6] and 

the FOCUSS algorithm [7]. Amari presented a basic natural 

gradient learning algorithm for underdetermined mixtures. 

However, this algorithm neglects the presence of noise. 

FOCUSS is a sparse technique that requires signals to be sparse 

and the mixing matrix is assumed known. Time-varying mixture 

of three original speech signals in Figure 1(a) with additional 

non-Gaussian noise at SNR=15 dB and the observed signals are 

presented in Figure 1(b). The signals separated by the algorithms 

are presented in Figure 1 (c), (d) and (e) for Amari, FOCUSS 

and the proposed algorithm respectively. In Figure 1 (c), it is 

observed that the first estimate is not clearly separated as it still 

contains mixtures of 
3

s . Also most of the signal in the first half 

of
2

s  is lost in the separated signals and two of the estimates are 

similar. In Figure 1 (d), the first estimate is a poor estimate for 

2
s  where most of the signals in the first half are lost. The 

proposed algorithm clearly demonstrates its superior 

performance with all three signals clearly separated with a 

minimal amount of noise still present. Figure 2 presents the 

performance measure defined as  
2

2 2
1 1

ˆ( ) ( )1

ˆ( ) ( )

m T

i i

i t
i i

s t s t
PI

mT E s t E s t

 for the 

separation of the speech signals Figure 3 depicts the 

performance index of the algorithms in estimation of mixtures of 

supergaussian, binary and gaussian signal. The figure shows the 

poor performance of Amari and FOCUSS in the estimation 

whereas the proposed algorithm demonstrates a much better 

performance under all levels of noise. This substantiates and 

reasserts the outstanding performance of the proposed algorithm 

in estimation of sparse and non-sparse signals. 
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Figure 1: (a) Original Speech; (b) Observed Signals; (c) 

Estimation by Amari; (d) Estimation by FOCUSS; (e) 

Estimation by Proposed Algorithm 

Figure 2: Performance Index of Algorithms 

Figure 3: Error or estimation by (a) Amari; (b) FOCUSS; (c) 

Proposed Algorithm 

4. CONCLUSION 

This paper presents a new technique of robust blind signal 

estimation for underdetermined mixtures which produces 

superior accuracy and detailed results. The success of the 

algorithm is not dependent on the sparsity of signals, careful 

selection of sparseness measure and distribution of signals or 

noise. The estimate of the signals is greatly improved by the 

integration of a noise reduction procedure that extends to both 

Gaussian and non-Gaussian noise. Though the proposed 

algorithm’s approach in modeling the signals and approximating 

noise is associated with high complexity cost, it is recompensed 

by the enhanced accuracy in the estimation of signals and 

robustness to noise. In blind separation of signals, an inaccurate 

density model of the signals affects the accuracy of the results 

asymptotically. Therefore, under limited sample size a more 

accurate model is crucial as an inaccurate model will lead to 

wrong results. With the increasing capacity of modern 

computers, the computational cost can be afforded in 

applications which require a great amount of detail and 

accuracy. Nevertheless, the complexity of the technique has 

been kept to a minimum without overly compromising accuracy. 

The GMM model adopted by the proposed algorithm in 

producing the results is composed of 2Q  Gaussian density 

per mixture model and was still capable of producing good 

results. Nevertheless, this paper has mainly concentrated on 

introducing a superior technique for blind estimation applicable 

to both stationary and time-varying mixtures of sparse and non-

sparse signals. This paper has presented a highly exciting 

solution for blind signal estimation of underdetermined mixtures 

in the form of an efficacious algorithm without the limitations 

and pitfalls of sparse techniques. 
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