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ABSTRACT
We consider an approach to the blind identification problem of
instantaneous mixtures using second-order statistics through the
nonstationarity and nonwhiteness properties of signals. We pro-
pose the use of natural gradient learning to form off-line/block pro-
cessing (BP) and on-line processing (OP) algorithms suitable re-
spectively for blind identification with batch data and on-line data
and show that the proposed algorithms can be considered as a class
of algorithms offering quasi-uniform performance. The identifia-
bility conditions are presented which provide a key insight into
these algorithms. The paper shows simulation results and con-
cludes with some connections of the proposed algorithms to other
existing algorithms.

1. INTRODUCTION

Blind identification of signals in an unknown environment using
second-order statistics is being contemplated as an alternative to
techniques employing higher-order statistics particularly when the
signals are nonstationary and nonwhite. Several approaches based
on the nonstationarity and nonwhiteness properties of signals have
been proposed to solve the problem and most of them rely either
explicitly or implicitly on the joint diagonalization criterion of cor-
relation matrices. In [1], an on-line algorithm for blind identifica-
tion of nonstationary signals using a logarithmic cost function is
introduced. Such a cost function is considered to be related to the
mutual information theory used in derivation of algorithms later
proposed in [2]. A class of off-line algorithms which utilizes cor-
relation matrices of nonstationary signals at different time inter-
vals can be found in [2],[3] and the identifiability condition for a
case of two correlation matrices of nonstationary signals is also
given in [3]. An approach employing the nonwhiteness property
of signals is proposed in [4] in which two correlation matrices at
different time lags are used. A more general case using the non-
whiteness property at several time lags with an added whitening
process is proposed in [5].

The combination of both properties are proposed for off-line
processing of instantaneous mixtures in [6] and of convolutive
mixtures in [7]. The technique of [6] exploits a whitening process
followed by the elegant Jacobi-like technique to seek an orthog-
onal matrix that jointly diagonalizes several correlation matrices
of whitened signals at different time intervals and different time
lags. This method, although efficient, has been shown to intro-
duce an imbalance of the weighting of the joint diagonalization
by its whitening process [8] and additionally can be degraded by
any residual additive noise that cannot be entirely removed by the
whitening process [9]. The technique of [7] introduces a gener-
alization of the logarithmic cost function proposed in [1] based

on a novel matrix formulation, also applicable for instantaneous
mixtures, and uses a natural gradient adaptation to directly seek
a nonorthogonal demixing matrix. Although it solves the unbal-
anced weighting of the joint diagonalization, the logarithmic cost
function implies a need for source signals to be active throughout
the process.

This paper uses second-order statistics through the nonstation-
arity and nonwhiteness properties of signals to solve the blind
identification problem of instantaneous mixtures. The off-line/
block processing (BP) and on-line processing (OP) algorithms are
derived using natural gradient learning. We show that the pro-
posed algorithms can be considered as a class of algorithms of-
fering quasi-uniform performance. The BP algorithm does not re-
quire the signals to be active throughout the process. The identifi-
ability conditions that provide a key insight into the algorithms are
also given.

2. PROBLEM FORMULATION AND ASSUMPTIONS

We consider � source signals ������������ ������ � � � � �� �����

and � observations of their instantaneous mixtures

���� � ����� � ���� (1)

where ���� represents additive noise, � is an � � � unknown
mixing matrix and � � �� �� � � � is the sample index. Given a set
of the observed signals, our aim is to estimate the corresponding
source signals within a scale factor and permutation ambiguity. We
employ assumptions:
A1: � is a square matrix with rank � .
A2: Each ����� is a zero mean, nonstationary and nonwhite pro-
cess with ����������� � ��� �� �� � � �� �� � � � �� �� � � � � � ,
where � is the time lag, ���� denotes the expectation operator
and � denotes for some. Also, each ����� is uncorrelated with
������������� ������������������� ��� � �� � �� � ���� � .

A1 ensures the existence of all source signals to be observed
in the form of ���� by the rank of �. A2 is a key assumption for
our proposed algorithms.

3. OFF-LINE/BLOCK PROCESSING (BP) ALGORITHM

The off-line/block processing (BP) algorithm uses several blocks
of observed signals indexed 	 � �� �� � � � � 
. We define a block
which is sufficiently small to capture a set of observed signals that
exhibits wide-sense stationarity giving

���	�� � �� ����� ��� � �� � � � � �� ����� ��� � ���� (2)

V - 3050-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



where������ is an���� observed signal matrix,�� is the block
length with �� � �, �� is the overlap factor with � � �� � ��
and �� � �, and �� represents the sample index corresponding to
the start of the block. It is important that (2) has zero mean. This
can be achieved by subtracting the mean of the observed signals in
each block.

In a noiseless case, we can formulate the relation between the
observed signals and source signals in a form of local time-average
correlation matrices using (1), (2) and A2 as

�
�����
� ��������

� �
�
� � � � �� �� � � � � �� � 	 � �� �� � � � �� (3)

where � represents the maximum nonzero time lag of interest,
�
�����
� � �

��
�������

�
� ��� � 	 � denotes the local time-average

correlation matrix which is averaged across the observed signals
at block and time lag ��� 	� and, similarly, ������� denotes the lo-
cal time-average diagonal correlation matrix of source signals with
its corresponding diagonal elements 
������� , for � � �� �� � � � � � .

Before proceeding further, since we assume the nonstationar-
ity and nonwhiteness of source signals (A2), it is useful to say how
nonstationary and nonwhite the source signals should be for us to
blindly identify them. The following identifiability conditions give
necessary and sufficient requirements for our algorithm.
Identifiability conditions. (i) Blind identification of nonstation-
ary and nonwhite sources is possible using the nonstationarity as a
primary property together with the local time-average correlation
matrices of the observed signals iff ������ �	


�����
�� �


�����
�� �� � ��


�����
�� 


and ������ � 	

�����
�� � 


�����
�� � � � � � 


�����
�� 
 are linearly independent,

� 	 , � �� � �� � � � ; (ii) blind identification of nonstation-
ary and nonwhite sources is possible using the nonwhiteness as
a primary property together with the local time-average correla-
tion matrices of the observed signals iff������� � 	


�����
�� � 


�����
�� � � � � �



�����
�� 
 and ������� � 	


�����
�� � 


�����
�� � � � � � 


�����
�� 
 are linearly indepen-

dent, � �, � � � � �� � � � .
Proof:We prove here that the conditions (i) and (ii) are necessary.
(i) Consider two unknown mixing matrices ��	��� ��� � � � � �� 


and �� � 	�������� � � � ���� 
 with 	��� ��
 and 	�������
 defined by

��������� � �������

�
��� � ��� �

� ��� � ��� �

�

where �� and ���, � � �� �� � � � � � , are � � � vectors. Also, con-
sider two ��� source signal vectors ���� and����� defined in the
same fashion with 	����� ����


� and 	������ �����

� given by

�
���	�

���	�


�
�

�
��� � � ��� �
��� � ��� �

� �
��	�

��	�


�
�

Let us assume ������ � �
���
�� , then we readily see that ���� � �����

and ����� � ������� as well as ���� and ����� share the same lo-
cal time-average correlation matrices. Hence, we cannot identify
these signals by using the local time-average correlation matri-
ces. In addition, this condition generalizes the condition found
in proposition 1 of [3], where two correlation matrices of nonsta-
tionary signals at two different time intervals are considered.

(ii) This condition can be viewed as a generalization of the
condition on the normalized spectra of source signals in [5], which
utilizes power normalization by considering 


�	���
�� � 


�	���
�� � �,

where � denotes the whole set of samples, and as a special case
of the condition found in [10], when a cycle frequency of cyclo-
stationary source signals � and � is zero. In addition, a slightly
different condition with proof for complex signals is given in [11].

Even though the results in [5],[11] and [10] are for complete sig-
nals whereas we are concerned with block-based processing, we
nevertheless propose that the proof can similarly be applied for
appropriate choice of ��.

In reality, the source signals are not accessible nor are their
nonstationarity and nonwhiteness known a priori. The BP algo-
rithm requires only that ������ is linearly independent of ������ , � 	

or ������� is linearly independent of ������� , � �, for any set of local
time-averaged observed signal correlation matrices whether or not
the matrices are zero or have similar statistics.

Let ���� � 	���� be an � � � vector of output signals,
where	 is an � �� demixing matrix giving 	� � 
, where

 is a global system matrix. We premultiply and postmultiply (3)
with	 and its transpose to get

������
�



�	�

�����
� 	

� � �
�����
� (4)

where ������
� is the local time-average correlation matrix of the

output signals at ��� 	 � and


� denotes an equality up to an arbi-

trary scale and permutation which are represented within 
. It is
clear from (4) that, to recover the source signals, the local time-
average output correlation matrix ������

� must be diagonal, repre-
senting the statistics of source signals up to their arbitrary scaling
and permutation.

In view of the identifiability conditions and (4), two local time-
average correlation matrices of source signals satisfying either (i)
or (ii) provide adequate conditions to solve the problem through
their corresponding observed signal correlation matrices. How-
ever, a local time-average correlation matrix is, in fact, an estimate
of the ensemble average correlation matrix from available samples
and thus does not provide the exact measurement. Accordingly,
the more conditions of (4) (via different ��� 	�) that the demixing
matrix satisfies, the more accurate the solution of the problem will
become (see e.g. [7] and references therein).

To obtain a nonorthogonal demixing matrix	 as described in
[8] and to obtain a more compact form of gradient adaptation pre-
sented thereafter, we use the symmetric part of local time-average
correlation matrices and rewrite (4) as

�������
�



�	��

�����
� 	

� � �������
� (5)

where �������
� � ��

�����
� and ��

�����
� are respectively the symmetric

part of������
� ��

�����
� and������

� such that e.g. �������
� ��

�
��

�����
� �

�
� �����
� �.

We now introduce the following joint diagonalization cost func-
tion to be minimized as

���	� �

��
���

��
���

�
�����

����������
� � diag

�
��
�����
�

����
�

�
(6)

where ������ is a positive weight satisfying
��

���

��
��� �

����� �
� and is generally set to �

������
giving balanced weighting for

joint diagonalization, diag��� is the operator that zeros off-diagonal
elements and ���� denotes the Frobenius norm. The following
theorem provides the existence of a stationary point of �� .
Theorem. Assume, without loss of generality, that the identifia-
bility conditions holds and	 is rank � , then �� has a stationary
point iff W is a demixing matrix.
Proof: Let�� be a gradient operator with respect to	, we have

���� � 

��
���

��
���

�
�����

�
��
�����
� �diag

�
��
�����
�

��
	��

�����
� �
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If� is a demixing matrix, it can be shown that���� � �.
Conversely, since � �� � because it is rank � , �������

� �� �,
� � and � � using the identifiability conditions and A1, it follows
that���� � �, if� is a demixing matrix.

Since no closed form solution exists for this problem, we seek
a demixing matrix by employing natural gradient learning (Theo-
rem 6 of [12]). In addition, by applying natural gradient learning to
�� , the resulting algorithm is equivariant, meaning that it exhibits
uniform performance in such a way that its behavior is independent
of the mixing matrix [13]. The natural gradient of �� is given by

�������
��
���

��
���

������
�
��
�����
� �diag

�
��
�����
�

��
��
�����
� � (7)

where ��� is the natural gradient operator with respect to�.
Notice that we assume � to have rank � , which is the di-

rect consequence of A1. As mentioned in the previous Section,
the rank � of � results in the existence of every source signal in
a form of observed signals when all source signals are sufficiently
rich to excite (1). Based on this point, some algorithms, without
resorting to constraining �, exploit a logarithmic function of an
output correlation matrix [1] or of local time-average output cor-
relation matrices [7] as their cost function to identify �. This
method requires that such a matrix or matrices are positive defi-
nite so that they are invertible. Moreover, if the source signals are
very weak, gradient noise amplification can be a problem. In other
words, this implies the need for permanent excitation of sources in
every signal block. As an alternative to the requirement for perma-
nent excitation, � can be constrained to have rank � . However,
this would normally degrade algorithm performance in a noisy en-
vironment [9]. In our work, we solve this problem by proposing
to minimize an unconstrained cost function but with the addition
of a quadratic penalty function, �� , that constrains all diagonal
elements of� to be unity

��� ��� � �� � ���� (8)

where �� � �diag ��� ����� , � is the � � � identity matrix
and �� is a small positive constant. From optimization theory, as
�� � �� ��� �� ��, � will adapt in a more flexible way rather
than strictly constraining its diagonal elements, nonetheless, still
keeping � to have rank � . The natural gradient of �� is given
by

����� � � diag �� � ����
�� (9)

Accordingly, the BP algorithm updates the demixing matrix in an
iterative fashion using

���� �� ������	
�
����������� ����� ���

�
(10)

where 	 is a positive step size and � is the iterative index. It can
be seen that (10) violates the uniform performance property due
to ����� . However, we regard the BP algorithm as an algorithm
that exhibits quasi-uniform performance since �� is always much
less than unity and therefore considerably reduces the effect of
����� .

4. ON-LINE PROCESSING (OP) ALGORITHM

The on-line processing (OP) algorithm can be viewed as a modi-
fied BP algorithm. More specifically, each block of signals con-
sists of data from the beginning of the process to the current ob-
served sample and therefore these blocks grow in size from block

to block. Using this methodology, the number of blocks is equal
to the number of samples. Replacing the block index � with the
sample index 
, we calculate a current time-average correlation
matrix ��

�	���
� by deemphasizing the past observed signals using

the following nonparametric recursive relation

��
�	���
� � ���

�	�����
� � ��� ����
��� �
� � � (11)

where � is the fading factor with � � � � �. If the source signals
are stationary, (11) consequently reduces to the sample average
simply calculated by

��
�	���
� �


� �



��
�	�����
� �

�



��
��� �
� � �� (12)

Similarly, let 	

�	���
� be a current time-average diagonal correla-

tion matrix of source signals with its corresponding diagonal el-
ements �

�	���

� , for  � �� �� � � � � � . We have the identifiability

conditions for the OP algorithm as (i) ����
� � ��
�����

� � �

�����

� � � � �� is

linearly independent of ����
� � ��
�����

� � �

�����

� � � � ��� � � ; (ii)	��	�
� �

��
�	���

� � �

�	���

� � � � � � �

�	���

� � is linearly independent of	��	�
� ���

�	���

� �

�
�	���

� � � � � � �

�	���

� �. It is worth noting that if only (i) holds at � �

�, this leads to the concept underlying the on-line algorithms in
[1],[2], which utilize only the nonstationarity of signals, and also
reveals that it is not the nonstationarity of signals that enables sig-
nal identification but the difference of nonstationarity between sig-
nals.

The unconstrained cost function for OP is given by

��� �
� � ���
� � ���� �
� (13)

where ���
� �
��

��� ��	���
���� ����	���

� � diag

�
���
�	���

�

� ����
�

�

,

�� �
� � �diag ���
�� ����� , ���
�	���

� is the symmetric part of a
current time-average output correlation matrix and

��
��� �

�	��� �

�. In the general case, ��	��� is set to �
���

.
The natural gradient is given by

������
���

��
���

�
���
�	���

� � diag

�
���
�	���

�

��
���
�	���

� ��
� (14)

and the update equation of the OP algorithm takes the form

��
� �����
��	
�
������
���� ����� �
�

�
(15)

where ����� �
� can be obtained from (9). For the OP algo-
rithm to attain its minimum, the source signals must persistently
excite (1).

5. SIMULATIONS

We have evaluated the performance of the proposed
algorithms by means of the performance index (PI) �

�
�������

���
��

���
���

����

max�
�
��
��

�
��

�
�
��

���

���
��

����

max�
�
��
��

�
��

��
,

where �� is an element in the th row and �th column of the global
system matrix 
 and max�� ��� is the maximum value for � �
� � � � . Smaller values of PI indicate better performance.
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Fig. 1. (a) Mean performance indices of the BP and SOBI algo-
rithms obtained from the mixtures of two speech signals. (b) Mean
performance indices of the OP and normalized EASI algorithms
obtained from the mixtures of two stationary but nonwhite signals
generated by AR(2) and AR(4) models.

In the first simulation, two speech signals1 are used as sources
associated with noise from two autoregressive models of order four
(AR(4)). The blind identification is performed at various levels
of signal to noise ratio (SNR) by the BP algorithm with over-
lapping and nonoverlapping block methods and, for comparison,
by the second-order blind identification (SOBI) algorithm2 [5],
whose performance in a noisy environment depends on how well
a whitening process deals with noise. The PI is averaged over
10 independent trials of the noise generating processes and ran-
domly chosen mixing matrices. In Fig.1(a), we can see that both
BP algorithms outperform SOBI except at high SNR and superior
performance is obtained using overlapping blocks.

In the second simulation, we employ the OP algorithm to iden-
tify two stationary but nonwhite sources from AR(2) and AR(4)
models associated with noise from two AR(1) models and average
it over 500 independent trials of all signals generating processes
and randomly chosen mixing matrices. The results are compared
with the normalized equivariant adaptive source separation via in-
dependence (EASI) algorithm [13], which is based on higher-order
statistics. As expected, Fig.1(b) shows improved performance of
the OP algorithms over that of the normalized EASI.

6. CONCLUSIONS AND DISCUSSION

We have presented the BP and the OP blind signal identification
algorithms which employ second-order signal statistics and non-

1From “http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/benchmarks.”
2SOBI attains a superior performance when signals are stationary.

stationarity and nonwhiteness properties. By using natural gradi-
ent learning, the proposed algorithms exhibit quasi-uniform per-
formance such that their behavior is almost independent of the
mixing matrix. Identifiability conditions have been given.

Our BP algorithm differs from [14],[15] because of the use
of nonstationarity and nonwhiteness properties of signals and the
introduction of natural gradient learning, even though they are all
based on joint diagonalization of correlation matrices. In contrast
to [7], the overlapping block method is introduced and the implicit
requirement for persistently active excitation of sources in every
block is avoided in our technique. Except at high SNR, results of
our tests show significant improvement in performance compared
to SOBI, especially when overlapping blocks are employed. The
OP algorithm includes the concept that is employed in [1],[2] but
extends it to consider both nonstationarity and nonwhiteness prop-
erties of signals.
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