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ABSTRACT

A main issue in source separation is to deal with the inde-
terminacies. Well known are the ordering and scale ambi-
guities, but other types of indeterminacies may also occur.
In this paper we address these indeterminacies in the case of
non-negative sources and non-negative mixing coefficients.
On the one hand, we fully develop the case of two sources.
On the other hand, in the general case we formulate nec-
essary conditions for the uniqueness of the solution (up to
ordering and scale ambiguities).

1. INTRODUCTION

The source separation model assumes that m observed sig-
nals of n samples {xik, k = 1..., n}

m

i=1
are a linear combi-

nation of p non-observable source signals {sjk}
p

j=1
. Using

matrix notations, the whole mixing model is expressed as

X = AS, (1)

where X is the (m×n) data matrix, A is a (m×p) matrix of
mixing coefficients, S is a (p×n) matrix of source signals.
In non-negative source separation, the main constraints are
∀ i, j, aij ≥ 0 and ∀ j, k, sjk ≥ 0, which will be denoted

A ≥ 0 and S ≥ 0. (2)

This separation problem is then formulated as follows: from
the data X , jointly find matrices A and S that fulfill the
mixture model (1) and satisfy the constraints (2).

Some algorithms have been proposed to achieve the joint
estimation of A and S [1–4]. However, before trying to ef-
fectively estimate the source signals and the mixing coeffi-
cients, it is necessary to answer some questions related to
the model indeterminacies and solution uniqueness. When
the solution is not unique, it is also useful to determine the
range of admissible solutions. Up to our knowledge, this
question has received only a few attention [5–7].

Section 2 of this paper states the problem and reformu-
lates the scale and ordering indeterminacies in the case of

non-negative source separation and section 3 addresses the
case of two sources. We explicitly give the range of the
admissible solutions, from which we deduce the necessary
and sufficient conditions for the solution uniqueness. The
results are illustrated through a simplified example in the
field of spectrometry. The case of more than two sources is
considered in section 4, for which necessary conditions for
uniqueness are given.

2. PROBLEM STATEMENT

Throughout the paper, we assume the existence of a non-
negative factorization of the data matrix X . The conditions
for the existence of such a factorization are discussed in [8].
Let us introduce a non-singular (p×p) matrix T . From any
pair (A,S), a new pair (Ã, S̃) can be defined by

Ã = AT
−1, (3)

S̃ = TS, (4)

with no modification in the data matrix, i.e. X = Ã S̃. In
the unconstrained case, this transformation shows the exis-
tence of an infinite number of possible exact factorizations
of the matrix X . However, in the case of non-negative
source separation, a possible linear transformation should
lead to transformed matrices Ã and S̃ satisfying

Ã ≥ 0 and S̃ ≥ 0. (5)

In that respect, the remaining questions are: (i) what are the
conditions on the true non-negative source signals and non-
negative mixing coefficients ensuring the uniqueness of the
decomposition (1) respecting the contraints (2)? (ii) If the
decomposition is not unique, what is the range of admissible
solutions? (iii) Among all the admissible solutions, can we
define a preferable one?

In this paper only the points (i) and (ii) are addressed.
However, before going further, let us reformulate the scale
and ordering indeterminacies in the case of non-negative
source separation.
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2.1. Scale Indeterminacy

Consider the transformation defined by T = Diag(λ1, ..., λp)
with λi > 0, so that T

−1 = Diag(1/λ1, ..., 1/λp). The ap-
plication of T and T

−1 to S and A according to (4) and (3)
corresponds to scale dilatations. Straightforwardly, we have
Ã, S̃ ≥ 0 if A, S ≥ 0. To handle this indeterminacy it is
usual to impose additional constraints on the source signals
(in general unit variance). Here, for convenience and with-
out loss of generality, we assume each source signal to have
coefficients summing to a unity.

2.2. Ordering Indeterminacy

The associated transformation T corresponds to a permuta-
tion of the i-th row with the j-th row of the matrix S. Matrix
T

−1 then corresponds to a permutation of the i-th column
with the j-th column of the matrix A. Such permutation
matrices having only 0 or 1 components, it is obvious that
A, S ≥ 0 implies Ã, S̃ ≥ 0. The ordering indeterminacy
means that we cannot know in advance which index will be
assigned to a particular source.

2.3. Definitions

Definition 1 A pair (A,S) is said an admissible solution if
both A and S satisfy (2) and jointly provide an exact fac-
torization of X according to (1).

Definition 2 For a given data matrix X , the solution of (1)
under constraints (2) is said unique if the only sources of
ambiguities are the scale and ordering indeterminacies.

3. CASE OF TWO SOURCES

3.1. Preliminaries

In the case of two sources, the matrices A and S can be
represented by

A = [a1 a2] and S = [s1 s2]
T

, (6)

where {aj}
2

j=1
are vectors of dimension (m, 1) and {sj}

2

j=1

are vectors of dimension (n, 1). To analyze the model inde-
terminacies, let us introduce the following matrix

T (α, β) =

[
1 − α α

β 1 − β

]
, (7)

in which case the inverse matrix reads

T
−1(α, β) =

1

1 − α − β

[
1 − β −α
−β 1 − α

]
. (8)

In order to get rid of the ordering indeterminacy, the pa-
rameters α and β can be constrained to satisfy α + β < 1.
Moreover, such a constraint ensures that T is invertible.

Remark 1 Note that handling the scale ambiguity by as-
suming the sum of each source coefficients to be equal to

unity, i.e.
n∑

k=1

s̃jk =
n∑

k=1

sik = 1, ∀i, j, yields

n∑
k=1

s̃jk =
n∑

k=1

p∑
i=1

tji sik =

p∑
i=1

(
tji

n∑
k=1

sik

)
, (9)

that is
p∑

i=1

tji = 1, ∀j = 1, ..., p.

3.2. Range of Admissible Solutions

Using the parametric transformation defined in (7), the non-
negativity constraint of the two transformed source signals
reads

∀k, s̃1k= (1 − α)s1k + αs2k ≥ 0, (10)

∀k, s̃2k= (1 − β)s2k + βs1k ≥ 0. (11)

The non-negativity of the transformed mixing coefficients
corresponds to

∀�, ã�1=
(1 − β)a�1 − βa�2

1 − α − β
≥ 0; (12)

∀�, ã�2=
(1 − α)a�2 − αa�1

1 − α − β
≥ 0. (13)

The resolution of all these inequalities with α + β < 1
allows to get lower and upper bounds for the admissible
values of α and β. In this respect, it will be useful to in-
troduce the two following index sets K1 = {k; s2k > s1k}
and K2 = {k; s1k > s2k}.

It can be checked that the inequalities (10) and (11) pro-
vide a lower bounds for α and β as

α ≥ αmin = −min
k∈K1

{
s1k

s2k − s1k

}
, (14)

and

β ≥ βmin = −min
k∈K2

{
s2k

s1k − s2k

}
. (15)

Similarly, it is easy to show that (12) and (13) are equiv-
alent to

β ≤ βmax = min
�

{
a�1

a�1 + a�2

}
, (16)

and

α ≤ αmax = min
�

{
a�2

a�1 + a�2

}
. (17)

Finally, the set of all admissible solutions corresponds
to

S̃ = T (α, β)S, and Ã = AT
−1(α, β), (18)

for α ∈ [αmin, αmax] and β ∈ [βmin, βmax].
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3.3. Uniqueness Conditions

Proposition 1 The decomposition of X according to

X = AS, with A,S ≥ 0, (19)

is unique if an only if ∃ (k1, k2, �1, �2), with k1 �= k2 and
�1 �= �2, such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1k1
= 0, and s2k1

�= 0,

s2k2
= 0, and s1k2

�= 0,

a�11 = 0, and a�12 �= 0,

a�22 = 0, and a�21 �= 0.

(20)

Proof 1 The proof results directly from section 3.2. Accord-
ing to the bounds defined by (14)–(17), the range of admis-
sible values of α and β is reduced to α = 0 and β = 0 if
and only if conditions (20) are satisfied.

3.4. Numerical Example

Let us illustrate the range of admissible solutions of non-
negative source separation with the help of an example. The
mixture data are obtained by constructing two non-negative
signals (p=2, n=500) and mixing coefficient profiles (m=10)
similar to what we get during the analysis of multicompo-
nent substances in analytical chemistry using spectroscopic
techniques. The source signals and the mixing coefficient
profiles are shown in figure (1).
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Fig. 1: Source signals and mixing coefficient profiles

The conditions for the uniqueness of the solution are not
satisfied by the source signals and the mixing coefficients.
Using the results of the previous section, it is easy to deter-
mine the bounds of the parameters of the possible transfor-
mation matrices

−0.0163 ≤ α ≤ 0.1898, (21)

−0.0198 ≤ β ≤ 0.1924. (22)

The admissible solutions in terms of source signals and mix-
ing coefficients are deduced according to (18) and are shown
in figure 2.
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Fig. 2: Admissible solutions

4. CASE OF MORE THAN TWO SOURCES

In this section we consider the case of p source signals. Let

A = [a1 · · · ap] and S = [s1 · · · sp]
T

, (23)

where {ai}
p

i=1
are vectors of dimension (m, 1) and {sj}

p

j=1

are vectors of dimension (n, 1). For notational convenience,
in this section, we will note ai(�) the �-th element of vector
ai and similarly, sj(k) the k-th element of vector sj .

In this case, we are only able to give a necessary condi-
tion for the uniqueness of the solution.

Proposition 2 If the decomposition of X into A and S ac-
cording to

X = AS with A,S ≥ 0, (24)

is unique, then the following conditions are satisfied:

(A1) ∃ k1, . . . , kp such that:

∀ i �= j, ki �= kj , si(ki) = 0, and sj(ki) �= 0. (25)

(A2) ∃ �1, . . . , �p such that:

∀ i �= j, �i �= �j , ai(�i) = 0, and aj(�i) �= 0. (26)

Proof 2 The proof of this theorem is achieved by contra-
diction: suppose that conditions (A1)-(A2) are not satisfied
and the decomposition X = AS with A, S ≥ 0, is unique.

Suppose that the condition (A1) is not satisfied and let
the (p × p) elementary transformation T ij(λ) defined by

∀ k = 1, ..., p, ∀ � = 1, ..., p,⎧⎪⎨
⎪⎩

tkk = 1,

tk� = λ if (k, �) = (i, j);

tk� = 0 if (k, �) �= (i, j) and (k, �) �= (k, k).

(27)
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We note that T
−1(λ) = T (−λ). Define

K = {k, si(k) �= 0, sj(k) �= 0} .

The samples where the sources si and sj are simultaneously
zero are not taken into account since they are not affected by
the possible transformations. The following decomposition

X = AT ij(λ)T ij(−λ)S (28)

with λ > 0 ensures the non-negativity of Ã = AT ij(λ)
and the matrix T ij(−λ) leads to a transformation of the
i-th source signal according to

s̃i = si − λsj , (29)

while the other source signals are unaltered. Defining (si, sj)
as si = min

k∈K

si(k) and sj = max
k∈K

sj(k). There exists

0 < λ < si/sj such that

∀k, si(k) − λsj(k) ≥ si − λsj ≥ 0 =⇒ T ij(λ)S ≥ 0.

Therefore, the decomposition is not unique. This is in con-
tradiction with the assumptions.

Concerning condition (A2) related to the mixing matrix,
the same reasoning is employed using λ < 0.

This is a necessary but not sufficient condition which shows
that, in most cases, the separation using only non-negativity
assumptions cannot provide a unique. It would be interest-
ing to state when the separation leads to a unique solution,
through the formulation of necessary and sufficient condi-
tion for the factorization uniqueness. This point is currently
under investigation.

5. CONCLUSION

This paper has shown that under well formulated condi-
tions, the non-negative source separation problem admits a
unique solution. These conditions are more flexible than
those proposed in previous works [5, 6]. We are currently
trying to link this work with the analysis of [7], which gives
a geometrical interpretation of the question. The perfor-
mances of a non-negative source separation algorithm de-
pends on the fulfillment of the uniqueness conditions and
the independence assumption. If the uniqueness conditions
are satisfied, the independence assumption is not necessary
to achieve a correct separation and methods such as ALS [1],
NMF [3] will provide very effective results. However, they
fail in separating mixtures that do not respect the unique-
ness conditions. Similarly, applying the NNICA [9] to non-
negative sources whose samples are not independent and/or
not well grounded may also lead to wrong decompositions.
Finally, the more challenging case is when the source sam-
ples are not independent and do not fulfill the uniqueness
conditions. In this case, none of the available methods per-
form successfully the separation. The problem still remains
open.
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