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ABSTRACT

A novel method for separation of a class of convolutive
mixtures is proposed, in which the received sensor signals
are first transformed into instantaneous mixtures and then
standard blind source separation (BSS) algorithms for in-
stantaneous mixtures are applied. Since partial information
about the mixing mechanism is required in the design of
the transformation, the proposed method is strictly speak-
ing semi-blind. From the beamforming viewpoint, the pro-
posed approach represents a blind broadband beamforming
method. As the separation is performed in fullband and
only one separation is needed, the permutation problem as-
sociated with the frequency-domain BSS is avoided and the
separation can be easily implemented online. Simulation
results verify the usefulness of the proposed method.

1. INTRODUCTION

In the last decade or so, blind source separation (BSS)
for instantaneously mixed sources has been studied exten-
sively and a number of algorithms have been proposed for
this purpose [1, 2]. However, for convolutive mixtures, the
direct time-domain extension of BSS algorithms from in-
stantaneous mixtures to the convolutive case is difficult and
computationally very expensive [3, 4]. To circumvent this
problem, it is convenient to transform the received sensor
signals into the frequency domain, where many separating
algorithms for instantaneous mixtures can be applied di-
rectly. This is possible since convolutive mixing in the time
domain corresponds to the instantaneous one in the fre-
quency domain [5]. However, frequency-domain BSS intro-
duces the well-known permutation problem, and an online
implementation of these algorithms is very difficult if not
prohibitive for cases with more than three sources [6].

Following the idea of transforming the convolutive mix-
ing into an instantaneous one, we here propose a novel
transformation method for separation of a special class of
convolutive mixtures. In traditional blind source separa-
tion, we always ignore the information about the mixing
mechanism, even if it is available, such as in the cases of
sonar, radar, and microphone arrays, where we know the
sensor positions and often assume the impinging signals are
plane waves. We therefore set out to exploit this infor-
mation and proceed to design a frequency invariant beam-
forming (FIB) network [7, 8]. Broadband signals arrive at
the adjacent sensors with specific delays, which conforms
to the principle of convolutive mixing. When these signals
progress through that beamforming network, convolutive
mixing will be transformed into an instantaneous one, due

to the frequency invariant property of the network. Af-
ter that, according to statistical properties of the original
sources, an appropriate blind source separation algorithm
for instantaneous mixtures is applied to obtain the original
sources. As we require partial information about the mix-
ing mechanism, the method is strictly speaking not blind,
but semi-blind. Due to the lack of knowledge about the di-
rections of arrival (DOAs), we still do not have full informa-
tion about the mixing. From the beamforming viewpoint,
we can refer to our method as blind broadband beamform-
ing, which is different from the previously studied blind
beamforming scenarios [9], where only narrowband signals
are considered which therefore represents just a instanta-
neous mixing problem. Since the separation is performed
in fullband and only one separation is needed, the permu-
tation problem associated with the frequency-domain BSS
is avoided, which makes it possible for the algorithm to be
implemented online, for an arbitrary number of sources.

This paper is organized as follows. The class of blind
source separation problems considered here is given in Sec-
tion 2 and the FIB technique is briefly reviewed in Section
3. We then propose a novel semi-blind separation method
in Section 4. Simulation results and conclusions are given
in Sections 5 and 6, respectively.

2. CONVOLUTIVE MIXING FOR
BROADBAND ARRAYS

An array of sensors with plane-wave input is shown in Fig 1.
Suppose sl(t), l = 0, . . . , L − 1 are the L impinging plane-
wave signals that would be received at the origin of the co-
ordinate system, then the signal received at the m-th sensor
will be xm(t) =

∑L−1
l=0 sl(t − τm,l), where τm,l is the delay

from the m-th sensor to the origin of the coordinate sys-
tem for the signal sl(t). For narrowband signals, this delay
can be expressed as a complex number and xm(t) will be a
weighted sum of the signals sl(t), l = 0, . . . , L − 1, which
represents an instantaneous mixing problem. For broad-
band signals, this delay can be expressed as a convolution
of δ(t − τm,l) and sl(t), which turns the problem into a
convolutive mixing one. In a vectorial form, we have

x(t) = A ∗ s(t), (1)

with

s(t) = [s0(t) s1(t) · · · sL−1(t)]
T

x(t) = [x0(t) x1(t) · · · xM−1(t)]
T

[A]m,l = am,l = δ(t − τm,l) . (2)
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Fig. 1: A general array with a plane wave sl(t) impinging
from an angle θl.

The discrete-time form of expression (1) is given by

s[n] = [s0[n] s1[n] · · · sL−1[n]]T

x[n] = [x0[n] x1[n] · · · xM−1[n]]T , (3)

and consequently the entries am,l of A become a series of
filters in the form of sinc functions. The filter hm,l[n] at the
position am,l is given by

hm,l[n] =
sin((n − τm,l

T
)π)

(n − τm,l

T
)π

, (4)

where T is the sampling period.
To recover the original signals sl[n], l = 0, . . . , L−1, we

can apply blind source separation algorithms for convolu-
tive mixtures directly [3, 4] or alternatively use frequency-
domain methods [5], which are either computationally very
expensive or suffer from other serious problems such as
permutation ambiguity. As there are many cases where
we know the positions of the sensors and the propagation
properties of the incoming signals, we exploit this informa-
tion and design a frequency invariant network to transform
the convolutive mixing of (1) into instantaneous mixing di-
rectly, thereafter a BSS algorithm for instantaneous mixing
can be applied. In the next section, we will give a brief
review of the related FIB technique proposed in [7, 8].

3. FREQUENCY INVARIANT
BEAMFORMING (FIB)

Frequency invariant beamforming is a technique for broad-
band array design to form a response only as a function of
the direction of arrival of the impinging signals, indepen-
dent of the signal frequency. We will use the beamforming
method proposed in [8], which exploits the Fourier trans-
form relationship between the array’s spatio-temporal dis-
tribution and its beam pattern, and can be easily applied
to 1-D, 2-D and 3-D broadband arrays with either discrete
or continuous aperture. A previously proposed frequency
invariant linear array [7] can be regarded as a special case
of this new class of broadband arrays. For simplicity and
without loss of generality, we here focus only on the uni-
formly spaced linear arrays, but our semi-blind separation
method can be extend to any arrays with frequency inva-
riant beam patterns described in [8] and elsewhere such in
[10, 11].

For a uniformly spaced linear array with element spac-
ing of dx and signal sampling period T , as shown in Fig. 2,
its output y[n] is given by

y[n] =

M−1∑
m=0

J−1∑
k=0

wm,k · xm[n − k] , (5)

and its beam pattern P (ω, θ) is given by

P (ω, θ) =

M−1∑
m=0

J−1∑
k=0

wm,k · e−jmω∆τ · e−jkωT , (6)

where c is the wave propagation speed and ∆τ = dx sin θ
c

.
With the normalized angular frequency Ω = ωT , (6) can be
rewritten as

P (Ω, θ) =

M−1∑
m=0

J−1∑
k=0

wm,k · e−jmµΩ sin θ · e−jkΩ with µ=
dx

cT
.

(7)
Substituting Ω1 = µΩsin θ and Ω2 = Ω into (7) yields

P (Ω1, Ω2) =

M−1∑
m=0

J−1∑
k=0

wm,k · e−jkΩ1 · e−jmΩ2 . (8)

As the spatio-temporal spectrum of the impinging signal
lies on the line defined by Ω1 = µΩ2 sin θ, we can replace
sin θ by Ω2

µΩ1
in the desired frequency invariant beam pattern

P (sin θ), and apply a 2-D inverse Fourier transform to the
resultant P (Ω1, Ω2) to obtain the desired coefficients wm,k,
m = 0, . . . , M − 1 and k = 0, . . . , J − 1. For more details,
please refer to [8].

As, in general, the sampling period is half that of the
signal component with highest frequency and array spacing
is half the wavelength of the highest signal frequency, we
have dx = 1

2
· c · (2T ) = cT and µ = 1. Therefore, without

loss of generality, we will only consider the case with µ = 1
in the design and simulations. Fig. 3 shows a design result
with M = 18 sensors and a tapped-delay line length of
J = 24. The approximate frequency invariance property is
clearly visible over the band Ω ∈ [0.30π; π].

4. SEMI–BLIND SOURCE SEPARATION WITH
FREQUENCY INVARIANT

TRANSFORMATION

Suppose we have obtained N sets of array coefficients Wi,
i = 0, . . . , N − 1, with

Wi =

⎡
⎢⎢⎣

wi,0,0 wi,0,1 · · · wi,0,J−1

wi,1,0 wi,1,1 · · · wi,1,J−1

...
...

. . .
...

wi,M−1,0 wi,M−1,1 · · · wi,M−1,J−1

⎤
⎥⎥⎦ , (9)

as shown in Fig. 4. Each set of coefficients Wi plays the
same role as those in Fig. 2 and forms a frequency invariant
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Fig. 2: A signal impinges from an angle θ onto a uniformly
spaced broadband linear array with M sensors, each fol-
lowed by a J-tap filter.
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Fig. 3: A design example with 18 × 24 coefficients for an
equispaced linear array with a broadside mainbeam.

response Pi(θ) with an output yi[n], which is given by

yi[n] =

M−1∑
m=0

J−1∑
k=0

wi,m,k · xm[n − k] . (10)

The temporal counterpart of Pi(θ) is Pi(θ)δ(n), where n is
the time index. Note that there is no delay in these re-
sponses which means that the whole beamforming network
is noncausal. To obtain a causal system, we can simply
shift the system by some delay ∆n and all the response will
change to Pi(θ)δ(n − ∆n). As we can set the same delay
for the whole set of N beamforming sub-systems, for sim-
plicity, in the subsequent analysis we will ignore this delay
part. Suppose DOA angles of the L sources are respectively
θ0, θ1, . . . , θL−1. Then the outputs of the N frequency in-
variant beamformers can be expressed as

y[n] = B · s[n], (11)

with

y[n] = [y0[n] y1[n] · · · yN−1[n]]T

[B]i,l = Pi(θl) . (12)

We see that, in this way, the convolutive mixing is trans-
formed into an instantaneous mixing problem and yi[n],
i = 0, 1, . . . , N − 1 are the new instantaneous mixtures. To
solve this problem, depending on the nature of the sources,
we can employ the corresponding instantaneous BSS algo-
rithms such as those employing second-order and higher-
order statistics [12, 2]. In Section 5, we will employ a den-
sity matching BSS algorithm using natural gradient adap-
tation [1] with its update given by

D[n + 1] = D[n] + µ
[
I − f(ŝ[n])ŝT [n]

]
D[n] , (13)

with
ŝ[n] = [ŝ0[n], . . . , ŝN−1[n]]T = D[n]y[n] , (14)

and
f(ŝ[n]) =

[
ŝ3
0[n], . . . , ŝ3

N−1[n]
]T

, (15)

where D is the separation matrix and ŝ[n] will be the sep-
arated sources.

A network with N sets of frequency invariant beam-
formers is shown in Fig. 4. As well known, in theory, we
can only successfully separate at most M sources with M
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Fig. 4: A frequency invariant beamforming network for in-
stantaneous BSS algorithm.
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Fig. 5: The beam shapes of the four frequency invariant
beamformers.

sensors, thus we can only design N <= M independent
transformations, i.e. frequency invariant beamformers. In
our structure, the N frequency invariant beamformers will
have their main beam directions equally distributed over
the DOA range [−90◦; 90◦).

The obvious advantage of this BSS approach is that it
transforms the convolutive mixing problem into an instanta-
neous mixing problem and greatly simplifies the separation.
Since there is no decomposition of the source signals into
any domain, we will not have the permutation problem of
the frequency-domain method and the estimated source sig-
nals can be recovered directly by the separation matrix D.
However, there are also some disadvantages. The key issue
in this new structure is to design a FIB network, which will
not be possible if we only have a few sensors. To have a
good frequency invariance property, we may need a num-
ber of sensors (for example, in Fig. 3, we have 18 sensors).
Therefore, if there are only several sources, we will need
more sensors to separate them than when using the ordinary
time-domain convolutive BSS algorithms or the frequency-
domain algorithms. When there are many sources to sepa-
rate, such as 16, our method will exhibit great superiority,
while the other methods may become very complicated and
even fail.

5. SIMULATIONS

In our simulations, we have four sources coming re-
spectively from the DOA angles of −60◦,−20◦, 20◦ and
60◦. Note that the DOA information is not available to
the FIB network and the separation algorithm. We have
M = 18 sensors to receive those sources. As we have only
four sources, there is no need to design 18 frequency inva-
riant beamformers to transform them into instantaneous
mixtures. For simplicity, we design only four frequency
invariant beamformers with their beam shapes shown in
Fig. 5. The four sets of coefficients Wi have a dimension
of 18× 24, i.e. J = 24. The outputs y0[n], y1[n], y2[n], y3[n]
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Fig. 6: The four source signals.
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Fig. 7: The four separated source signals.

of this network are the new instantaneously mixed signals.
We perform separation by the algorithm shown in (13). The
chosen stepsize was µ = 0.0001. After the steady state of
the adaptation has been reached, we use the resultant sep-
aration matrix D to calculate the separated signals.

The original soure signals are plotted in Fig. 6. As the
frequency invariant property of the four beamformers is not
good enough in both the lower frequency band and the band
around π, we have filtered the source signals, which limits
their bandwidth to [0.3π; 0.95π]. The four separated signals
are shown in Fig. 7. We see that although the order of the
separated signals is different from the order of the sources,
there is a clear match between the original and separated
signals.

6. CONCLUSIONS

We have proposed a new method for separation of convo-
lutive mixtures, where first an FIB network, which trans-
forms the convolutive mixing into instantaneous mixing, is
designed and then standard BSS algorithms for instanta-
neous mixing are applied. As we exploit the knowledge of
the sensor positions and the plane wave assumption of the
sources in the design of the FIB network, the proposed ap-
proach is not totally blind as the traditional BSS algorithm.
Compared with the frequency-domain method, as there is
no decomposition of the signals, we have avoided the diffi-
cult permutation problem of the classical frequency-domain

method. Simulation results show that this new method can
successfully separate the convolutively mixed signals.
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