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ABSTRACT

One of the most important problems in frequency domain blind
source separation (FDBSS) is the inconsistency across frequency
in the permutation of the source estimates. According to previous
studies, this problem can be reduced significantly by constraining
the length of the unmixing filters. This improvement has been at-
tributed to the smoothening of the unmixing frequency response.
In this paper we study the effect of modifying these length con-
straints taking into account the circularity of the IDFT, and we
show that the smoothening of the unmixing frequency response
alone can not account for the improvements in performance.

1. INTRODUCTION

The most studied modality of the Blind Source Separation (BSS)
problem is the case of instantaneous linear mixtures:

x(n) = As(n) (1)

where x(n) is a random vector of measurements at time n, s(n)
is a random vector of unknown independent source signals to be
recovered, and the unknown matrix A defines the mixture.

The solution to this problem involves finding a linear system
W which transforms the measurement vectors into vectors with
statistically independent components. Such a system can be found,
under certain conditions on the source statistics and on the mixture
matrix, up to an arbitrary permutation and scaling of its rows.

For stationary non-gaussian sources the unmixing system can
be found using higher order statistics (HOS)[1]. For non-stationary
sources, it may be possible to formulate the problem using the sec-
ond order statistics (SOS) of the measurement signals at different
times. In both situations the required statistics are usually esti-
mated from available instances of the measurement vectors.

A more challenging problem is the separation of convolutive
mixtures. A possible approach is to move it to frequency domain:

x(n) = A(n) ∗ s(n) =⇒ x(ω) = A(ω)s(ω) (2)

where x(ω) and s(ω) are two random vectors obtained as linear
(Fourier) transformations of the original signals. It is now possi-
ble to apply either the HOS approach [2] or the SOS approach [3]
to obtain the unmixing matrix at each frequency. Unfortunately
the arbitrary row permutation and scaling ambiguities become now
two major problems. The latter makes the resulting separated sig-
nals relate to the sources through an arbitrary linear filter, while
the former produces outputs that are still mixtures of the sources
in time domain, due to permutation inconsistencies of the outputs

in frequency domain. In other words, the original additive mix-
ing problem becomes swapping in individual sinusoids, which is
further compounded by the scaling problem. It is thus a critical
problem of the frequency domain approach.

The root of these inconsistencies is the fact that the separation
at each frequency bin is being treated as an independent problem.
One way to address this is to modify the separation algorithm to
enforce some constraint that relates the solutions across frequency
[3]. A different approach is to solve the independent problems and
apply some post-processing at the outputs to align the solutions,
using knowledge about the source signal or the mixing system.

While these problems and potential solutions have been dis-
cussed in the literature, the reports were mostly on the use of
Signal-to-interference ratio (SIR) as the figure of merit and indica-
tor of the improvement realized by the proposed solutions. Rarely
discussed were the actual quality of the recovered source signals
and other issues possibly rising from implementations that may
not be immediately obvious in the theoretical and algorithmic de-
velopment. One such example is the circularity problem that was
only reported in 2003 [4], after many years of BSS research.

In this paper we revisit the problem of BSS and analyze pro-
posed solutions, using the approach of Parra [3] as the platform,
in order to gain a deeper understanding of the related issues. For
example, it has been shown [5] that Parra’s approach failed to re-
move all the permutation inconsistencies in some experiments. We
explore again this problem and offer a more careful analysis of
the effect of the constraint, particularly from the causality point of
view that relates the solutions across frequency. Our experimen-
tal results confirm that these issues have substantial impact on the
performance of a BSS algorithm that was not addressed before.

2. THE SOURCE SEPARATION ALGORITHM

As in [5], we will restrict our discussion to the case of FIR mix-
ing filters of order P , square mixing system of size N × N and
noiseless measurements. From (2) we can compute:

Rx(ω) = E{x(ω)x(ω)∗} = A(ω)Rs(ω)A∗(ω) (3)

where Rx(ω) is a complex N × N Hermitian matrix. We want to
find a N × N unmixing matrix W(ω) that diagonalizes

Ry(ω) = E{y(ω)y(ω)∗} = W(ω)Rx(ω)W∗(ω) (4)

where y(ω) = W(ω)x(ω). W(ω) has N2 unknowns, while the
diagonal condition only imposes N(N+1)

2
constraints, due to the

symmetry of Ry(ω). It is necessary to take advantage of the non-
stationarity of the sources. We do so by analyzing separately K
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different time sections of the measured signals. Defining xL(ω, k)
as the Fourier transform of the kth segment of length L of the
signal, then the matrices RxL(ω, k) = E{xL(ω, k)xL(ω, k)∗}
can be approximated as:

RxL(ω, k) ≈ A(ω)RsL(ω, k)A∗(ω) (5)

where RsL(ω, k) is the (diagonal) correlation matrix of the Fourier
coefficients for the kth segment of the source signals. The approx-
imation requires L � P .

The correlation matrices RxL(ω, k) can be estimated from a
realization of the measured signal by further dividing each length-
L time segment into M sub-frames of length T , computing the
Fourier transform of each of these sub-frames, xT (ω, k, m), and
doing time averages of the cross product of the resulting vectors:

R̂xL(ω, k) =
1

M

M−1X
m=0

xT (ω, k, m)x∗
T (ω, k, m) (6)

Note that in order for the approximation in (5) to hold, it is now
necessary that T � P . Also, this equation assumes some kind of
ergodicity in the random vectors across successive length T sub-
frames. This can not be a strict ergodicity, since we are assuming
non-stationarity of the signal across different length L segments.

For separation of signals such as speech, this notion of er-
godicity is related to the traditional one used to estimate the auto-
correlation function and the power spectral density, which is also
normally addressed in the context of short time spectral analysis
(STSA). This STSA framework will also allow us to examine the
“signal tracking” behavior of the separation process, as in many
adaptive impulse response estimation and inverse problems.

The proposed solution to the source separation problem is a
system of unmixing filters that diagonalize

R̂yL(ω, k) = W(ω)R̂xL(ω, k)W(ω)∗ (7)

simultaneously for several values of k so as to satisfy the assumed
independence requirement. The diagonalization error matrix for
one of these correlation matrices is:

E(ω, k) = offdiag
“
W(ω)R̂xL(ω, k)W∗(ω)

”
(8)

A possible way to aggregate these error matrices is adding their
Frobenius norms. The solution would be the filter that minimizes

min
W(ω)

KX
k=1

‖E(ω, k)‖2
F (9)

A simple approach to attempt this minimization is the gradient de-
scent. The update equation for the unmixing filters is

W(l+1)(ω) = W(l)(ω) − µ(ω)

KX
k=1

E(ω, k)W(l)(ω)R̂xL(ω, k)

Note that this approach may converge to a local minimum [5].

3. OPTIMIZATION CONSTRAINTS

A possible way to deal with the row scale ambiguity in the un-
mixing matrices is to fix the value of one element in each row,
for example [3, 5] setting the diagonal elements in the unmixing
matrix to one:

{W(ω)}ii = 1 ∀i = 1, . . . , N (10)

In time domain this makes the filters in the diagonal of the un-
mixing system equal to an impulse at time zero. The experiments
show that with this constraint the resulting waveforms for the off-
diagonal unmixing filters are concentrated around time zero too.

Regarding the permutation inconsistency, Parra [3] proposed
constraining the waveform of the unmixing filters to a length Q,
with Q < T , at each step of the algorithm. This is equivalent to
performing a convolution with a linear-phase circular sinc func-
tion in frequency domain, and it thus enforces a smoothing of
the frequency response of the unmixing filters, which is hopefully
not compatible with permutation inconsistencies. But Ikram [5]
observed that some degree of permutation inconsistency remains.
Also, since the smoothing constraint occurs as part of the gradi-
ent search, it perturbs the intermediate solutions and it will spread
search errors uncontrollably and non-uniformly across frequency.

A related problem of the truncation approach then is that it is
difficult to define a consistent stopping condition which achieves a
reasonable result for all frequencies.

In [3] and [5] the filter length constraint was implemented by
keeping only the first Q samples of the time domain frames:

{W}ij ← FZF−1 {W}ij (11)

where {W}ij is a frequency frame, F is the DFT matrix of size
T , and Z is the truncation matrix:

Zij =

j
1 if i = j and i ≤ Q
0 otherwise

(12)

It is interesting to note the relation between the constraints (10) and
(12). The former concentrates the waveform of the filters around
the time origin, as will be shown later, while the latter limits their
waveforms to a segment starting at the origin. The result is a causal
waveform with a decaying tail, as shown in figure 1(a). There is
no obvious need to enforce this shape in the waveform.

4. EFFECTS OF THE CIRCULARITY OF THE DFT

By circularity of the DFT/IDFT we refer to the implicit periodic-
ity assumed in the time domain signals subject to these transfor-
mations. It can be seen as an artifact due to sampling the continu-
ous frequency representation of a finite length signal. It is a basic
theoretical fact, and its consequences are pervasive in frequency
domain algorithms.

One of the consequences, always explicitly taken into account
in previous FDBSSwork, is the circular convolution property. This
is what makes equation (5) an approximation.

There are two other important consequences found when ap-
plying the IDFT. The first one is time aliasing, which happens
when the frequency domain representation corresponds to a time
domain signal longer than the DFT frame, i.e, when the frequency
representation is under-sampled. This problem is well known in
the context of frequency domain block-convolution. It has also
been treated in the context of frequency domain adaptive filters,
where it becomes more difficult to avoid. The adaptive algorithms
often work independently at each frequency bin, converging to
samples of the frequency representation of an optimum solution
which can be long in time.

We have only found very recent work [4] dealing with time
aliasing in the context of FDBSS. It is a problem hard to analyze
or predict: the unmixing filter is being computed directly in fre-
quency domain, leading to the same issues found in frequency do-
main adaptive filters. And this can be complicated by the linear
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filtering ambiguity in the solutions, which can lead to filter wave-
forms of different lengths with the same separation performance.

The second and more obvious consequence of the circularity
is the possibility of obtaining a waveform that wraps around the
edges of the time frame. This happens when the frequency domain
representation has a significant linear phase component, or when
it corresponds to a non-causal signal, as we will see below. These
conditions can lead to incorrect waveforms if care is not taken to
avoid them in the frequency domain or to undo the circular wrap-
ping in the result. This may not be trivial if the frequency domain
representation is obtained through some optimization algorithm
and no previous knowledge is available about the characteristics
of the solution.

The constraint (11) used to smooth the frequency responses
has the advantage of avoiding these circularity issues by defining
the portion of the frame where the waveform is to be placed. But as
we will see, they arise when the constraint is removed or modified.

5. EXPERIMENTAL SETUP

We constructed 72 different pairs of speech signals. 24 of them
female/female, 24 male/male and 24 female/male. Each speech
signal consisted of 57.6 seconds of concatenated recordings from
a specific speaker taken from the clean test section of the TIDIGIT
database. The signals were down-sampled to 8kHz.

For the mixing system we used room response recordings from
the Microphone Array section of the RWCP Sound Scene Database
in Real Acoustic Environment. The selected recordings correspond
to the Echo room A (E2A), with 30 ms of reverberation time. The
two microphones are 30 cm apart, and the two sources are located
at 50 and 110 degrees with respect to the reference plane.

We used frame sizes (T ) of 2400 and 3600 samples with 50%
overlap. The signals were divided in K = 4 non-overlapping seg-
ments. The unmixing filter lengths were Q = T (no constraint),
Q = T

2
and Q = T

4
. The two latter lengths were enforced as both

causal (12) and modified constraints, described below (13).
SIR values were computed by doing time domain convolutions

with the resulting filters, both before and after applying a post-
alignment of the permutations. For the alignment we followed the
procedure described in [5]. These SIR values were averaged across
the different speaker pairs and frame sizes.

6. RESULTS WITH NO LENGTH CONSTRAINT

The experiments with no time domain truncation (11) in the gradi-
ent loop (i.e, with T = Q) were aimed at providing a baseline that
would clarify the effect of the length constraint. As we expected,
the results present a high degree of permutation inconsistency.

Figure 1(b) shows a typical resulting waveform for one of the
filters outside of the diagonal of the unmixing system. This shape
suggests that a negative-time tail is being wrapped around the be-
ginning of the frame. Under such hypothesis, Figure 1(c) shows
the result of unwrapping the waveform. We computed the separa-
tion performance with both sets of unmixing filters 1(b) and 1(c)
trying to decide which of them is the correct one.

The separation performance results are shown in Table 1. The
table shows that taking the wrapped filters in Figure 1(b) with
aligned permutations leads to worse SIR results (3.1 dB) than when
using the unwrapped waveform in Figure 1(c) (7.9 dB). This con-
firms that the algorithm without the filter length constraint is con-
verging to non-causal filters in its off-diagonal components, with
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Fig. 1. Waveforms for an off-diagonal component of the unmixing
system, with (a) window (12), (b) T = Q, (c) T = Q unwrapped

an approximately symmetric envelope centered around the time
origin, and suffering permutation inconsistencies. We have ob-
served this behavior in all our experiments.

Orig. frames unwrapped frames
original permut. 1.8 (0.3) 0.4 (0.5)
aligned permut. 3.1 (0.9) 7.9 (1.4)

Table 1. Mean and standard deviation SIR gain in dB, after opti-
mization with no length constraint.

7. RESULTS WITH MODIFIED CONSTRAINTS

The windowing performed in (12) corresponds to a convolution
with a linear phase sinc function in frequency. If a zero phase sinc
is used instead, the corresponding window would be:

Zij =

j
1 if i = j and

`
i ≤ Q

2
or i > T − Q

2

´
0 otherwise

(13)

In this case the window is centered at the origin, allowing the
algorithm to converge to a wrapped non-causal filter, as in the pre-
vious section. The smoothing effect should be similar when using
this centered window.

The results are very different, though. Table 2 shows the gain
in separation performance using each filter. The SIR improve-
ment when using causal window is 7.0dB. With centered window
it is close to 0dB, but permutation post-alignment seems to fix the
problem. Surprisingly, the smoothing provided by this new win-
dow is not helping to fix the permutation inconsistencies.

8. SIR VARIATIONS ACROSS FREQUENCY

It is possible to analyze the separation performance at each fre-
quency bin. The representation of SIR versus frequency allows to
visualize the permutation inconsistencies, since they make the sign
of the SIR negative while correct permutations make it positive.
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Causal window 0-phase window
original permut. 7.0 (0.8) 0.2 (0.7)
aligned permut. 6.7 (0.8) 7.3 (1.0)

Table 2. Mean and standard deviation SIR gain in dB, using con-
straint (11) (left column) and constraint (13) (right column).

Figure 2(a) shows the SIR achieved at each frequency bin in
a typical experiment when using the causal window (12) as pro-
posed by Parra. The performance is not constant across frequency,
possibly due to stochastic errors in the source correlation matrices
and to convergence problems. There are some remaining permu-
tation inconsistencies, but some frequency bands present a quite
homogeneous SIR with values above 10 dB.
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Fig. 2. SIR for each frequency bin at the inputs (broken line) and at
the outputs (continuous line) with (a) Q = T

4
and causal window.

(b) Q = T , (c) Q = T
4

and centered window, (d) previous one
with permutation post-alignment

Figure 2(b) shows typical results with no filter length con-
straint. SIR oscillates between positive and negative values but,
interestingly, these oscillations are not simple changes in sign. We
have consistently observed that the magnitude of the achieved SIR
presents gradual but significant changes. These might be related to
convergence problems: We have observed different convergence
rates across frequency, even when using the frequency dependent
normalization of the gradient proposed in [3]. This seems to be re-
lated to wide variations across frequency in the condition number
of the mixing matrices we used. The gradient approach used for
the optimization seems to be too sensitive to these variations.

Figure 2(c) shows the results when the time domain window
is centered at the origin, keeping the non-causal tail. The evo-
lution of SIR is almost identical to the one with no windowing.
Some smoothening of the sharpest variations can be observed, but
the broad variations remain. The last plot shows the results of the
previous experiment after performing a post-alignment of the per-
mutations. The sign of the SIR is now consistent, but the variations
in its magnitude are still present, giving a very different result to
the one obtained with the causal window in Figure 2(a).

9. CONCLUSIONS

The results in section 6 reveal that the gradient optimization of eq.
(9) converges to non-causal filters with two tails and symmetric en-
velope when no additional constraints are imposed on the length of
the filters. This shows that the filter length constraints used in [3]
have an unexpected effect: they enforce a causal waveform on the
unmixing filters in addition to the previously reported smoothen-
ing of their frequency responses.

This observation raises the question of how much each of these
two effects, smoothening and enforcement of causality, is con-
tributing to the improvement in separation performance. The re-
sults in section 7 show that in all of our experiment conditions the
improvement is mostly due to the enforcement of causality, since
an alternative constraint with similar smoothing effect but which
preserves the non-causal tail does not improve the results.

The improvement in performance achieved with the original
causal constraints has so far [3, 5] been attributed to the alignment
of permutation inconsistencies. The reason for this is that a post-
alignment of the permutations when no constraints are used pro-
vides an equivalent improvement in performance. But the results
in section 8 show that the effect of those constraints is more com-
plex than a simple alignment of permutations. Figures 2(a) and
(d) show that the causal window used in the first one is actually
making the algorithm converge to a different solution. It seems
that enforcing causality in the unmixing filters modifies the con-
strained solution space in a way that benefits both the convergence
behavior of the algorithm and the consistency of the permutations.

10. ACKNOWLEDGEMENTS

We thank Prof. Tomoko Matsui for valuable discussion and help
setting up the experiments. This work was partially funded by the
Fulbright Commission Spain through a grant to one of the authors.

11. REFERENCES

[1] Jean-Francois Cardoso, “Blind signal separation statistical
principles,” Proceedings of the IEEE, vol. 86, no. 10, pp.
2009–2025, Oct. 1998.

[2] Marcel Joho and Philip Schniter, “Frequency domain real-
ization of a multichannel blind deconvolution algorithm based
on the natural gradient,” in Proc. 4th International Symposium
on Independent Component Analysis and Blind Signal Sepa-
ration (ICA2003), Nara, Japan, Apr. 2003, pp. 543–548.

[3] Lucas C. Parra and Clay Spence, “Convolutive blind separa-
tion of non-stationary sources,” IEEE Transactions on Speech
and Audio Processing, vol. 8, no. 3, pp. 320–327, May 2000.

[4] H. Sawada, R. Mukai, S. de la Kethulle de Ryhove, S. Araki,
and S. Makino, “Spectral smoothing for frequency-domain
blind source separation,” in Proc. 8th International Workshop
on Acoustic Echo and Noise Control (IWAENC 2003), Kyoto,
Japan, Sept. 2003, pp. 311–314.

[5] Muhammad Z. Ikram and Dennis R. Morgan, “Exploring per-
mutation inconsistency in blind separation of speech signals
in a reverberant environment,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing, Istambul, Turkey, June 2000, vol. 2, pp. 1041–1044.

V - 284

➡ ➠


