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ABSTRACT

We address the problem of blind separation of sources,
mixed subject to possible Doppler frequency-shifts, dif-
fering between sources and between sensors. This sit-
uation is likely to occur, e.g., in scenarios involving
mobile sensors and / or sources, but so far the multiple
sources case does not seem to have been addressed (at
least not in open literature, to our knowledge). We pro-
pose a batch-type iterative procedure for the estimation
of the (static) mixing parameters and the frequency-
shifts, followed by application of the inverse system to
reconstruct the sources. The estimation procedure can
be regarded as parameterized joint diagonalization of a
bulk of rank-one matrices. Somewhat surprisingly, cor-
relation matrices at zero lag are generally sufficient for
separation, and consequently, the separation of white
Gaussian sources is generally possible in this framework
- unlike the situation in classical static mixing - as we
demonstrate in simulation.

1. INTRODUCTION AND PROBLEM
FORMULATION

The basic, classical Blind Source Separation (BSS)
problem (often also termed Independent Components
Analysis (ICA)) addresses the separation of statisti-
cally independent sources from noiseless observations
of their static linear mixture. A vast variety of ex-
pansions of the basic model (e.g., noisy / convolutive /
nonlinear mixtures, etc.) have been studied extensively
in the past decade. However, although likely in context
of mobile sensors and / or sources, so far the framework
of Doppler-contaminated BSS has not (to our knowl-
edge) been considered in the (open) literature. The
basic noiseless model accounting for the effect (after
conversion to baseband) is the following:

xk[n] =
L∑

�=1

ak�e
jωk�ns�[n] , k = 1, 2, ...,K (1)

where s1[n], s2[n], ...sL[n] are independent sources
(complex-valued, after conversion to baseband) and
x1[n], x2[n], ...xK [n] are the observations. We assume
that K ≥ L. The set {ak�} are unknown (complex-
valued) linear mixture coefficients (gains / attenua-
tions and phase-shifts) and {ωk�} are unknown Doppler
frequency-shifts (from source � to sensor k). Since
the “absolute” frequencies of the sources are unknown
(and, actually, are often undefined), we may assume ar-
bitrarily, without loss of generality, that an unshifted
version appears, e.g., at the first sensor, namely that
w1� = 0 for all � = 1, 2, ...L.

Note that the model (1) does not account for possi-
ble time-delay differences between sensors, which may
occur when the delays associated with the spatial aper-
ture of the receivers’ array are not negligible with re-
spect to the correlation-lengths of the sources. Indeed,
for mobile sensors, relatively large apertures may be
expected. Likewise, if mobile sources are involved, usu-
ally only large apertures would inflict different Doppler
shifts between sensors. However, it is important to re-
alize, that there can always be sources that are narrow-
banded enough on one hand, but whose central frequen-
cies are high enough on the other hand - such that the
Doppler effect is dominant and the delay differences
are negligible, no matter how large the aperture is. In
this work we chose to address only the Doppler effect,
thus giving rise to (1). The complementary case of BSS
with pure delay differences (and no Doppler effect) has
been considered, e.g., in [1, 2]. The combination of
both is a much more complex (yet practical) problem,
and one of the purposes of this work is to establish a
basis for solving the “pure Doppler” case first, as addi-
tional foundations for continued work on the combined
Doppler-delays BSS problem.

Observe that the model (1) can also be written in
matrix-form as

x[n] = (A � D[n;Ω]) s[n] (2)

where � denotes Hadamard’s (element-wise) matrix
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multiplication, A denotes the K × L matrix of the
linear mixing coefficients {akl} and D[n;Ω] is the
Doppler-shifts matrix, whose (k, �)-th element is given
by Dk�[n;Ω] = ejωk�n, with the K × L matrix Ω en-
compassing all the frequency-shifts {ωk�}.

As will be shown later, the problem can often be re-
solved using second-order statistics alone. More specifi-
cally, assuming zero-mean sources, we shall only exploit
the fact that no pair of sources is correlated at zero-lag.
Additionally, in order to mitigate the scale-ambiguity
(inherent in all BSS problems), we shall employ the
“working assumption” that all sources have unit vari-
ance (see, e.g., [3] for justification). These assumptions
are summarized by

E
[
s[n]sH [n]

]
= I. (3)

Note that only power-stationarity of the sources is as-
sumed. In general, these assumptions are quite modest
comparing to the “classical” BSS assumptions, since
it turns out (somewhat surprisingly) that thanks to
the presence of the Doppler frequency shifts, there’s
no need for an additional “diagonal property”. Such
an additional diagonal property is required in the ba-
sic BSS problem (see, e.g., [4]), and is usually satis-
fied by the sources’ independence (e.g., through their
joint cumulants matrices [5]) or wide-sense stationarity
(e.g., through their joint correlation matrices at dif-
ferent time-lags [6]). An intriguing implication of the
elimination of this requirement is the ability to sepa-
rate (in the presence of Doppler-shifts) spectrally-white
Gaussian sources - which are not separable in the classi-
cal basic problem [3]. We shall demonstrate this ability
using simulation results in section 3.

2. DERIVATION OF THE ESTIMATION
ALGORITHM

Our proposed separation approach consists of two
parts: estimation of the mixing parameters (coefficients
and Doppler shifts), followed by application of the in-
verse system to the observations. Thus, we work in
batch-mode, and assume that N observations of x[n],
n = 1, 2, ..., N are available.

Although the sources may be stationary, the obser-
vations vector is definitely non-stationary in the pres-
ence of Doppler-shifts, as can be regarded from

E
[
x[n]xH [n]

]
= (A � D[n;Ω]) (A � D[n;Ω])H

. (4)

Consequently, standard straightforward time-averaging
for estimation of the observations’ statistical proper-
ties may prove futile. We therefore choose to resort
to an approach involving the concept of parameterized

joint diagonalization of a bulk of matrices. To this
end, observe that at each time-instant n, the product
x[n]xH [n] can be viewed as a noisy realization of the
true correlation matrix at that time-instant, namely

x[n]xH [n] ≈ (A � D[n;Ω]) (A � D[n;Ω])H
. (5)

A least-squares (LS) based estimation strategy would
then be to minimize the associated “error” norm:

min
A,Ω

N∑
n=1

∥∥∥x[n]xH [n] − (A � D[n;Ω]) (A � D[n;Ω])H
∥∥∥2

F

where ‖·‖2
F denotes the squared Frobenius norm1. Our

minimization approach will be based on extending and
modifying an existing joint-diagonalization algorithm
[7] (see also [2]).

Let us denote by a� and d�[n] (respectively) the �-
th columns of A and D[n;Ω] (omitting Ω from d�[n]
for notational convenience). We wish to minimize

N∑
n=1

∥∥∥∥∥x[n]xH [n] −
L∑

�=1

(a� � d�[n]) (a� � d�[n])H

∥∥∥∥∥
2

F

.

Note that the vector a� � d�[n] can also be written as

D̆
(�)

[n]a�, where D̆
(�)

[n] is a diagonal (and unitary)
matrix whose diagonal is comprised of the elements of
d�[n], namely D̆

(�)

mm = (d�[n])m = ejωm�n. Using this
notation, we shall now derive the minimization of the
LS criterion with respect to (w.r.t.) the �-th column
of A (a�), treating all other parameters as constants.
We shall then proceed to derive the minimization w.r.t.
the �-th column of Ω. The final algorithm will consist
of “sweeps” alternating between L minimization op-
erations w.r.t. all columns of A and L minimization
operations w.r.t. all columns of Ω. Monotonic decrease
of the LS criterion will thus be guaranteed.

Following estimation of A and Ω, straightforward
estimates of the sources are obtained from ŝ[n] =(
Â � D[n, Ω̂]

)†
x[n], where Â and Ω̂ denote the es-

timates of A and Ω, respectively, and the † superscript
denotes the (pseudo-)inverse.

2.1. Minimization w.r.t. the mixing coefficients
(a column of A)

The LS criterion under minimization can be written as

C(a�)
�
=

N∑
n=1

∥∥∥P (�)[n] − D̆
(�)

[n]a�a
H
� D̆

(�)H
[n]

∥∥∥2

F
(6)

1The Frobenius norm of a matrix Q is given, e.g., by ‖Q‖2
F =

Trace{QQH}.
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where

P (�)[n]
�
= x[n]xH [n] −

L∑
m=1
m�=�

D̆
(m)

[n]amaH
mD̆

(m)H
[n].

Due to the unitarity of D̆
(�)

[n] (and the invariance of
the Frobenius norm under unitary transformations),
C(a�) can be rewritten as

C(a�) =
N∑

n=1

∥∥∥D̆
(�)

[n]P (�)[n]D̆
(�)H − a�a

H
�

∥∥∥2

F
. (7)

Defining, for convenience, the (Hermitian) matrix

P̃
(�)

[n]
�
= D̆

(�)
[n]P (�)[n]D̆

(�)H
, (8)

C(a�) can be expressed as

C(a�) =
N∑

n=1

Trace
{

(P̃
(�)

[n] − a�a
H
� )(P̃

(�)
[n] − a�a

H
� )

}

=
N∑

n=1

[
Trace

{
P̃

(�)
[n]P̃

(�)
[n]

}
− 2aH

� P̃
(�)

[n]a� +
(
a�a

H
�

)2
]

= C ′ − 2aH
�

(
N∑

n=1

P̃
(�)

[n]

)
a� + N

(
aH

� a�

)2
, (9)

where C ′ is some constant, irrelevant for minimization
w.r.t. a�. To proceed, we decompose a� as a�

�
= aα,

where a is some real-valued constant and α is a uni-
tary vector, αHα = 1. Consequently, we now need to
minimize w.r.t. a and α,

C(a�) = Na4 − 2a2αH

(
N∑

n=1

P̃
(�)

[n]

)
α + C ′ (10)

Obviously, minimization w.r.t. α (under its unitarity
constraint) requires α to be the eigenvector v1 asso-
ciated with the maximum eigenvalue λ1 of the matrix
1
N

∑N
n=1 P̃

(�)
[n]. Substituting back into (10) requires

to minimize a4 − 2a2λ1 w.r.t. a. When λ1 is negative,
the minimizing a is zero, and consequently in such cases
the minimizing a� is 0. However, usually λ1 is positive,
in which case the minimizing solution is a =

√
λ1 and

a� =
√

λ1 · v1. Note that the complex phase of v1

(hence of a�) is irrelevant for the minimization. This is
in accordance with the residual phase ambiguity inher-
ent in complex-valued BSS problems, since the complex
phase of the mixing coefficients can be commuted with
a constant phase-shift of the sources.

2.2. Minimization w.r.t. the frequency shifts
(a column of Ω)

We now proceed to minimize the LS criterion w.r.t.
a single column of Ω, treating all the other columns,
as well as all the mixing coefficients A, as constants.
Observing (9), it is evident that with a� constant,
minimization of the criterion requires maximization of

aH
�

(∑N
n=1 P̃

(�)
[n]

)
a�, or, more explicitly, reinstating

the frequency-shifts into the expression (8) for P̃
(�)

[n],
we wish to minimize

K∑
p=1

K∑
q=1

a∗
p�

[
N∑

n=1

P (�)
pq [n]ej(ωp�−ωq�)n

]
aq� (11)

w.r.t. {ωp�}K
p=2 (all frequencies in the �-th column, ex-

cept for ω1�, which has been arbitrarily set to zero).
In general, the minimization of (11) w.r.t. the entire
set requires the calculation of the discrete-time Fourier
transforms (DTFTs) of the sequences

{
P (�)

pq [n]
}

, fol-
lowed by a relatively simple (K−1)-dimensional search.
We shall not describe this procedure in detail in here,
due to lack of space. Instead, we shall only explore the
(relatively) simple K = L = 2 case: Observe that in
this case, only two elements (out of four) in the outer
summation in (11) depend on the unknown frequencies
- the elements corresponding to (p, q) = (1, 2) or (2, 1).
Thus, for � = 1 we seek to maximize, w.r.t. ω21:

a∗
11a21

N∑
n=1

P
(1)
12 [n]e−jω21n + a∗

21a11

N∑
n=1

P
(1)
21 [n]ejω21n.

Observing that due to the conjugate-symmetric struc-
ture of P (�)[n] these two terms are a conjugate pair, we
end up maximizing

max
ω

Real
{
a∗
11a21q1(ejω)

}
(12)

where q1(ejω)
�
=

∑N
n=1 P

(1)
12 [n]e−jωn is the DTFT

of the sequence
{

P
(1)
12 [n]

}
, which may be searched

for the maximizing ω in a pre-defined feasibility-
range where the expected Doppler shifts can ex-
ist. Computationally-efficient techniques, such as the
zoom-FFT or the chirp-FFT (e.g., [8]) can be used for
the computation of the DTFT within such a range.

Likewise, for � = 2 (seeking ω22), we need

to maximize Real
{
a∗
12a22q2(ejω)

}
with q2(ejω)

�
=∑N

n=1 P
(2)
12 [n]e−jωn.

2.3. An initial guess

For such alternating-directions type algorithms, an “in-
telligent” initial guess is often required, so as to avoid
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convergence to spurious minima. Luckily, a reasonable
guess for the Doppler shifts can be readily obtained
from the data, as follows. Observe the sequence

rk[n]
�
= xk[n]x∗

1[n] =
L∑

�=1

L∑
m=1

ak�a
∗
1mej(ωk�−ω1m)ns�[n]s∗m[n].

Recalling that by convention ω1m = 0 ∀m, and
that E [s�[n]s∗m[n]] = δ�m (Kronecker’s delta), we may
rewrite rk[n] as:

rk[n] =
L∑

�=1

ak�a
∗
1�e

jωk�n +
L∑

�=1

L∑
m=1

ak�a
∗
1mv�m[n]ejωk�n

(13)
where v�m[n] are zero-mean, mutually uncorrelated
“noise” signals. In the common case where all the
sources are spectrally white, all v�m[n] are spectrally
white as well. Thus, while the first term in (13) is
the superposition of L tones, each at the unknown fre-
quency ωk�, the second term is often a white noise term.
Consequently, under reasonable conditions on the fre-
quencies and on the mixing coefficients, estimates of the
set of frequencies ωk� (for � = 1, 2, ..., L) can be readily
extracted from the magnitude of the DTFT of the se-
quence rk[n] as obvious spectral peaks. Note, however,
that since these peaks are not labeled, their consistent
association with the sources (�) can be ambiguous for
K > 2. Nevertheless, in such cases the differences be-
tween frequencies can be extracted in a similar way,
and help resolve these ambiguities (yet, the problem
becomes quite complex for K, L much larger than 2).

As for the mixing coefficients - we currently do not
have a straightforward procedure for an intelligent ini-
tial guess in the general case. In the K = L = 2 case,
a (nonlinear) algebraic scheme can be used for obtain-
ing reasonable estimates, but this scheme will not be
pursued in here. In our simulation we used the identity
matrix as an initial guess for A.

3. SIMULATION RESULTS

We simulated a K = L = 2 case, with the mixing ma-
trix A =

[
1 2

−1+j 2−j

]
and the Doppler-shifts ω21 = −0.2

and ω22 = 0.123 (in radians). The two independent
sources were white, zero-mean complex-Gaussian with
unit variance. The observation length was N = 1000.

To illustrate the initial guess procedure, Figure (1)
depicts the DTFT of the sequence r2[n] (taken from a
single trial) in the range ω ∈ [−0.5, 0.5]. The two peaks
at ω ≈ −0.2, 0.123 are evident.

The performance was averaged over 1000 trials
in terms of the Interference to Signal Ratio (ISR),
computed (per trial) as follows. The time-varying

Fig. 1: Magnitude of the DTFT of r2[n]

”contamination matrix” was computed as T [n] =(
Â � D[n, Ω̂]

)−1

(A � D[n,Ω]) and its element-wise
absolute-squared sum was calculated over the obser-
vation interval, T =

∑N
n=1 T [n] � T ∗[n]. After resolv-

ing the permutation ambiguity, the ratios T 12/T 11 and
T 21/T 22 were denoted ISR1 and ISR2, whose averaged
values were −27.1dB & −29.3dB, respectively.

Similar performance was obtained under many
other, but not under all mixing conditions. For ex-
ample, the case ω21 = ω22 is equivalent to a static mix-
ture, with the Doppler-shift applied directly to x2[n] -
obviously non-separable for Gaussian sources. The pre-
cise separability conditions and associated performance
bounds remain to be explored.
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