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ABSTRACT

A perceptually motivated method is proposed for solv-
ing the permutation ambiguity of frequency-domain inde-
pendent component analysis when the mixing environment
is noisy and reverberant. In this method, perceptually irrel-
evant frequencies are removed from the speech spectrum
using block based perceptual masking (simultaneous fre-
quency masking) and then independent component analysis
is applied. After source separation in frequency domain, a
physical property of the mixing matrix, i.e., the coherency
in adjacent frequencies, is utilized to solve the permutation
ambiguity. From the simulation results it appears that the
perceptual masking avoids the permutation problem.

1. INTRODUCTION

The framework of blind source separation (BSS) based on
independent component analysis (ICA) can be used to sepa-
rate multiple signals without any previous knowledge of the
sound sources and the mixing environment [1]. However,
when applying to the cocktail party effect the performance
of the BSS system is greatly reduced by the effect of the
room reflections and ambient noise. Humans deal with this
cocktail party effect very effectively by using only two ears
(sensors). These perceptual masking techniques have been
already exploited in successful development of MPEG au-
dio coding standard which is the backbone of MP3 players.

In general, convolutive BSS methods can be classified
into time domain ICA (TDICA) and frequency domain ICA
(FDICA). TDICA has the disadvantage of being rather com-
putational expensive due to computing many convolutions.
The biggest obstacle in the FDICA is the permutation and
scaling problem. For the scaling problem, the method pro-
posed by Murata et al [2, 3], in which the separated output
is filtered by the inverse of the separation filter.

For the permutation problem, Asano et al [4] have pro-
posed a method that utilizes both the coherency of the mix-
ing matrices and the correlation between spectral envelopes

at several adjacent frequencies (denoted as inter frequency
coherency (IFC)). In this paper, a perceptually motivated
FDICA approach for solving the permutation problem is
proposed. This method utilizes the block based perceptual
masking for the complete omission of a signal at the given
frequency that is perceptually irrelevant.

This paper is organized as follows: In Section 2, an out-
line of the proposed perceptually motivated FDICA system
is presented in order to solve the permutation problem. In
Section 3, simulation results of experiments using both syn-
thetic and real data to evaluate the proposed perceptually
motivated FDICA system are reported.

2. PERCEPTUAL FDICA SYSTEM

The flow of the proposed perceptual FDICA system is sum-
marized in the form of block diagram as shown in Fig.1.
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Fig. 1. Proposed Perceptually Motivated FDICA System

First, the short time Fourier transform (STFT) of the
multichannel input signal, � � � � � 
 , is obtained with an ap-
propriate time shift and window function. Next, psychoa-
coustic model 1 (MPEG 1, layer I) [5] is used to deter-
mine the perceptual masking threshold for each segment
of speech and thereby producing a binary mask for each
frequency. A straightforward means to remove the masked
frequency bins would be the multiplication of the complex
spectrum of the input speech frame by the binary mask at
each frequency bin. Thus, the thresholding in a stereo envi-
ronment is described by logical AND operation.
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Then, the FDICA algorithm (complex Infomax with feed-
forward architecture [2,8,9]) is applied to the spectral com-
ponents that are perceptually relevant for obtaining the sepa-
ration filter. Next, the permutation and the scaling problem
is solved by processing the output of the separation filter
with the permutation and the scaling matrices. Finally, the
filter matrices are transformed into the time domain and the
input speech signal is processed with these filters.

2.1. Model of Signal

Let us consider the case when there are D sound sources in
the mixing environment with � sensors. By taking STFT
of the sensor inputs, we obtain the input vector

� � � � � � � � � � � � � � � � 	 	 	 � � � � � � � � � � (1)

Here, � � � � � � � is STFT of the input signal in the tth time
frame at the mth sensor. Further, the input signal is assumed
to be modeled as

� � � � � � � � � � � � � � � � � � � � � � � � (2)� � � � is the mixing matrix and its � � � ! � element, " � % & � � � ,
being the transfer function from the nth source to the mth
sensor as " � % & � � � � ) � % & � � � * , . / 1 2 4 5 . � � � � � � consists
of the source spectra as � � � 7 � � � � � � � 	 	 	 � 7 : � � � � � � � .

2.2. Psychoacoustic Model 1

The ISO MPEG-1 [5] psychoacoustic model 1 uses a 512
point FFT for high resolution spectral analysis, then selects
the perceptually relevant spectral components in each frame
of the input speech by means of thresholding. This model
assumes masking effects are additive. In perceptual audio
coding, thresholding sets the quanization level, here we set
a threshold for further processing of the frequencies by ICA
according to their psychoacoustic relevance and thereby re-
ducing the computational complexity of solving the permu-
tation problem. While this thresholding is a nonlinear activ-
ity which might at first sight appeared to destroy the linear
convolutive properties of the BSS, but it can also be viewed
as an irregular sampling rate strategy which is linear. It will
however alter the pdf of the signals presented to ICA.

2.2.1. Power Spectrum

First, the sensor input, � � ! � , is segmented into frames of
size of 512 samples using an appropriate time shift and Hann
window function. A power spectral density (PSD), < � > � ,
for ? A C > C E F H is then obtained using a 512-point FFT as

< � > � � < J � K A L M O � P RRRRR
E , �S& U P W � ! � Y � ! � * , . [ \ 5 ]^ RRRRR

F 	 (3)

The power normalization term PN, fixed at 96 dB, is used to
estimate the sound pressure level (SPL) conservatively from
the input signal and W � ! � is Hann window function.

2.2.2. Global Masking Threshold

The absolute threshold of hearing is characterised by the
amount of energy needed in a pure tone such that it can be
detected by a listener in a noiseless environment. The quiet
threshold is well approximated by

_ a � b � � c 	 d e f h� P P P j , P l m
n d 	 p * P l q � st u u u , w l w � [� K A , w f h� P P P j z � dB SPL � (4)

Simultaneous masking refers to a frequency domain phe-
nomenon which has been observed within critical bands.
Masking also occurs in the time domain. Sharp signal tran-
sients create pre- and post- masking regions in time during
which a listener will not perceive signals beneath the ele-
vated audibility thresholds produced by a masker. We didn’t
take into account temporal masking. This is due to the fact
that our model is principally oriented to the speech signal
that is stationary for a period shorter than 50 m sec.

Since masking refers to a psychoacoustic phenomenon,
the masking threshold will be calculated in Barks. The Bark
scale, in fact, refers to the critical bands of hearing. The
conversion from frequency to Bark is given by

{ | ~ > � b � � K c � � � � � � � 	 A A A � d b �� c 	 p � � � � � � � f h� � P P j F �
(5)

From the PSD of equation 3 we detect all the local max-
ima, then we replace any two maxima in a 0.5 Bark sliding
window by the stronger of the two. Once the tone and noise
maskers are calculated, a decimation process takes place be-
fore calculating the global masking threshold according to
the following scheme:

� � �� � > K C > C e �> � � > 	 mod � � e � C > C � d> � c n � � > n K � mod e � � � C > C � c � (6)

where k is the FFT index and i the decimation index. This
process reduces the number of bins for the calculation of the
global masking threshold, without loss of maskers. Having
obtained a decimated set of tonal and noise maskers, in-
dividual tone and noise masking thresholds are computed
next. Each individual threshold represents a masking con-
tribution at frequency bin i due to the tone or noise masker
located at bin j. Tonal masker thresholds,

_ � � � � � � � are ex-
pressed in (dB SPL) as_ � � � � � � � � < � � � � � n A 	 � � p � � � � � 7 � � � � � � n d 	 A � p (7)
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where � � � � � � denotes the SPL of the tonal masker in fre-
quency bin j, � � � � denotes the Bark frequency of bin j, and
the spread of masking from masker bin j to maskee bin i,� � � 	 � � � , is modeled by the expression in (dB SPL)� � � 	 � � �  (8)

���� ���
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �  

Individual noise masker thresholds (dB SPL) are given by! " � � 	 � � �  � " � � � � � � � � � � � � � � � � � � 	 � � � � $ � � $ � (9)

where � " � � � � denotes the SPL of the noise masker in fre-
quency bin j, � � � � denotes the Bark frequency of bin j, and� � � 	 � � � is obtained by replacing � � � � � � with � " � � � � ev-
erywhere in equation 8.

The global masking threshold,
! � � 	 � , is therefore ob-

tained in dB by computing the sum

! � � 	 �  � � % & ' ( * 	 � � * , ( � �  � � � � �� - ( � � * , ( � � �  � / � �� � �0 - ( � � * , ( � 1 �  � / 0 � �
(10)

where
! 2 � 	 � is the absolute hearing threshold for frequency

bin i,
! � � � 	 � � � and

! " � � 	 � 4 � are the individual masking
thresholds and L and M are the number of tonal and noise
maskers , respectively.

2.3. FDICA Algorithm

Whenever the perceptually masked input speech � � � � 	 � in
one of the channels contains no values, the PCA filter matrix� � � � is singular, resulting in rank deficiency. Without loss
of generality we have assumed identity matrix of order M as
the rank of

� � � � to avoid this problem. Then, the Infomax
algorithm is applied to the output of the PCA filter, � � � � 	 �

to obtain the ICA filter  � � � . The separation filter ! � � � is
expressed as the product of

� � � � and  � � � . In the ICA
stage, the input signal � � � � 	 � is processed with the filter
matrix  � � � as " � � � 	 �   � � � 	 � � � � � 	 � .
The ICA learning rule is given by � � � 	 � � �   � � � 	 � � $ 8 % � ' � " � � � 	 � � " ) � � � 	 � :  � � � 	 �

(11)
where the score function for ' � " � is defined as' � " �  8 ' � � ( � � + + + � ' � � - � � + + + � ' � � ? � : � (12)' � � - �  $ @ B D / � 1 � � - � � � $ � @ B D / � 3 � � - � � (13)

The symbol � - is the dth element of the vector " � � � 	 � . The
matrix % is an identity matrix. The symbol � ) denotes the

Hermitian transpose. The constant $ (.0001) is termed the
learning rate. Here also we have avoided ICA filtering when
the input of ICA filter in one of masked channels is zero in
order to overcome the rank deficiency of ICA filter matrix.

The scaling problem can be solved by filtering individ-
ual output of the separation filter ! � � � by its inverse [3].
The permutation problem can be solved by minimizing the
sum of the angles 4 6 ( � + + + � 6 ? 8 between the location vec-
tors in the adjacent frequencies. The cosine of the angle 6 F
between the two vectors, 9: F � � � and 9: F � � * � , of estimated
mixing matrix is defined as [4]

G & ; 6 F  9: )F � � � 9: F � � * �= 9: F � � � = � = 9: )F � � * = (14)

The cost function � � ? � is defined as

� � ? �  �@ ?IF - ( G & ; 6 F (15)

In order to get reliable value of the cost function � � ? � J � at
� *  � � J � � � , for J  � � + + + � A , the confidence measure
defined as [4]B � J �  D B EF H J 8 � � ? � J � : � D B EF H J L 8 � � ? � J � : (16)

Here, M denotes the set of all possible ? while M O denotesM without P?  B N ' D B E F H J 8 � � ? � J � : . The permutation is
then solved at � *  � � PJ � � � � PJ  D B E F 8 B � J � : � as [4]P?  B N ' D B EF 8 � � ? � PJ � : (17)

The main contribution of this perceptual filtering is not
only the reduction of frequencies that are processed by ICA,
but also the reduction of frequencies where the similarity
has to be checked for solving the permutation problem.

3. SIMULATION RESULTS

3.1. Experiment 1

In the first experiment, we created a synthetic convolutive
mixture of two speech sources (7 s at 16 kHz) and we used
Westner’s [6] room acoustic data with reverberation time of
0.5 sec to simulate reverberant condition. From the Fig.2(a),
it can be seen that there are many vertical lines in the mea-
sured value of the cost function when unmasked FDICA is
considered. These vertical lines show that it is necessary to
exchange the output at those frequencies where the permu-
tation problem exists. From the Fig.2(b), it is clearly evident
that the measured value of the cost function is almost unity
for all the frequencies except for very low frequencies when
the speech is perceptually masked. Permutation error is de-
fined as the case when the result of IFC differs from that of
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Fig. 2. Measured Value of Cost Function for � � �
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Fig. 3. Measured Value of Permutation Error for � � �

source output crosscorrelation (SOC) [4]. It is evident from
this Fig.3(a) that there are many verticle lines in the mea-
sured permutation error when the speech is unmasked. It is
clearly evident from the Fig.3(b) that the permutation error
is zero for all the frequencies when the speech is masked.

3.2. Experiment 2

The second experiment was chosen to test the algorithm’s
ability in real room recording condition. To do this, we used
real room recorded speech signals (6 s at 16 kHz). The per-
mutation error cannot be computed in this real room record-
ing case as the original sources are unknown. Real room
recording results shown in Fig.4 are similar to that of previ-
ous experiment from the cost function point of view.

4. CONCLUSIONS

Incorporating the proposed perceptual solution for the per-
muation problem in the FDICA system produced good sep-
aration results in terms of the measured values of the cost
function and the permutation error.
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Fig. 4. Measured Value of Cost Function for � � �
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