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ABSTRACT

In this study, a novel way of processing observations before
independent component analysis (ICA) using a Q-mode fac-
tor analysis (FA) was proposed for noisy blind source sepa-
ration (BSS). The Q-mode analysis is a very efficient tech-
nique in classifying a data in cases where there are a large
number of objects and where there is a little prior knowl-
edge of the constituents. In the R-mode analyses, interre-
lationships between variables are analyzed. On the other
hand, in the Q-mode analysis, interrelationships between
objects are analyzed. Applying this approach to the exper-
imental noisy data, we show that our proposed approach is
more effective than the R-mode analysis for source separa-
tion of noisy data.

1. INTRODUCTION

Blind source separation has received a great deal of atten-
tion due to various applications in science and technology
[1]-[4]. The problem of BSS has been studied by many re-
searchers in neural networks and statistical signal process-
ing and many interesting theoretical and practical results
have been achieved.

The basic problem of noisy BSS or factor model in re-
lation to the data matrix is defined as

X(N×m) = S(N×n)AT
(n×m) + E(N×m). (1)

Here X is the data matrix of observations. Any column
vectors of X are variables (components) on which we have
N objects (samples). A row vector of X represents one
object on which m variables have been measured. S is the
matrix of sources or factor scores: A column vector of S is a
factor (the number of factors is n). A is the matrix of factor
loadings, and E is the matrix of residuals or error terms.

For convenience, we take the transpose of Eq. (1) to get

x = As + e, (2)

where x is a column vector representing one of the objects
of the data matrix. In the model, s, e, A and n are unknown
but only x are accessible. It is assumed that the compo-
nents of sources are mutually statistically independent, as
well as being statistically independent of the noise compo-
nents. Moreover, the noise components themselves are as-
sumed to be mutually independent. Our goal is to estimate
the independent sources under the challenging conditions or
assumptions.

2. R-MODE FACTOR ANALYSIS

The R-mode factor analysis is one of the pre-processing
technique for BSS, which is extended the principal com-
ponent analysis (PCA) for pre-whitening of the observation
with high-level noise reduction [1]-[3].

When the sample size N is sufficiently large, the covari-
ance matrix of the observation in the mixing model Σ(m×m)

can be written as

Σ = AAT + Ψ, (3)

where Ψ(m×m) = ETE/N is a diagonal matrix. The co-
variance matrix of the observation recorded by sensors can
also be given by C(m×m) = XT X/N .

In the R-mode FA, the matrix A can be estimated as

Â = Un̂Λ
1
2
n̂ , (4)

by applying the standard PCA approach. Here Λn̂(n̂×n̂) is a
diagonal matrix whose elements are the n largest eigenval-
ues of C, the columns of Un̂(m×n̂) are the corresponding
eigenvectors, and n̂ is the estimated number of sources.
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To estimate Ψ, we fit AAT to C − Ψ using the eigen-
value decomposition (EVD) method. In this case, the cost
function

L(A,Ψ) = tr[C − AAT − Ψ]2 (5)

is employed and it is minimized by ∂L(A,Ψ)/∂Ψ = 0,
whereby the estimate noise variance Ψ is obtained as

Ψ̂ = diag(C − ÂÂT). (6)

Once the estimates Â and Ψ̂ converge to stable values,
we need to finally compute the score matrix, the pseudo-
inverse matrix. Since the solution for a pseudo-inverse ma-
trix is not unique, we employ the Bartlett method to de-
termine the transform matrix Q(n̂×m). In this method, the
noise variance Ψ is included in the calculation, that is

Q = [ÂT Ψ̂
−1

Â]−1ÂT Ψ̂
−1

. (7)

Using the above result, the new set of data transformed from
the observations, that is the estimated factor score F̂(N×n̂),
can be obtained as

F̂ = XQT , f̂ = Qx. (8)

Note that the covariance matrix is E[F̂TF̂] = In̂ +QΨQT,
which implies that the source signals in a subspace are de-
correlated.

3. Q-MODE FACTOR ANALYSIS

The Q-mode analysis is a very efficient technique in clas-
sifying a data in cases where there are a large number of
objects and where there is a little prior knowledge of the
constituents [1]. In the R-mode analyses, interrelationships
between variables are analyzed. On the other hand, in the
Q-mode analysis, interrelationships between objects are an-
alyzed.

In the Q-mode analysis, the matrix X are row-normalized
as

W(N×m) = D− 1
2 X, (9)

where D(N×N) = diag(XXT). Using the row-normalized
observation W, the association matrix H is defined as the
major product moment of row-normalized data:

H(N×N) = WWT . (10)

The row-normalized data can be expressed approximately
as the product of a factor-loading matrix A(N×n̂) and a
factor-score matrix F(m×n̂), that is

W ≈ AFT , (11)

where n̂ is the approximate rank of W. The relationship
between W, H, A and F are given by

H = WWT = AFT FAT . (12)

The constraint that the matrix F be columwise orthonormal
is expressed by FT F = I, which leads to H = AAT .

The square, symmetric matrix H can be factored ac-
cording to

H = Un̂Λn̂UT
n̂ , (13)

where Un̂(N×n̂) is the matrix of eigenvectors and Λn̂(n̂×n̂)

is the diagonal matrix of associated eigenvalues. Here, one
possible solution is

Â = Un̂Λ
1
2
n̂ . (14)

It denotes that the matrix of factor loading is the matrix of
eigenvectors, scaled by the square roots of the eigenvectors.

Once the estimated factor loading matrix Â is obtained,
the matrix of factor scores may be obtained by

W ≈ ÂFT . (15)

Premultiplying it by ÂT gives ÂTW ≈ ÂT ÂFT . Using
ÂT Â = Λn̂, the factor score matrix can be obtained as

F̂ = WT ÂΛ−1
n̂ . (16)

In practice, when the number of objects N is much greater
than the number of variables m, it is computationally more
efficient to use the following procedure. In this version of
the Q-mode analysis, the minor product moment

H∗
(m×m) = WTW (17)

is computed instead of Eq. (10). It should be noted that the
order of H∗ is m × m, which is pretty smaller than that of
H. The eigenvalues Λn̂(n̂×n̂) and eigenvectors Vn̂(m×n̂) of
H∗ are computed as

H∗ = Vn̂Λn̂VT
n̂ . (18)

It should be noted that the positive eigenvalues of H∗ are
same as those of H and the factor scores matrix F̂ is identi-
cal to Vn̂, that is,

F̂ = Vn̂. (19)

Using this estimation, the factor loading matrix Â can now
be computed as

Â = WF̂. (20)

It should be noted that this procedure is computationally
simpler because m is smaller than N and no scaling of the
columns of A and F is needed. In our simulation, we regard
the column vectors of Â as the components of signal on
which we have N objects.
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Fig. 1. Source signals.
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Fig. 2. Mixed signals with noises.

4. FAST-ICA ALGORITHM

After pre-processing of the noisy observations, the trans-
formed signals are obtained through a procedure in which
the powers of noise, mutual correlation and dimensionality
have been reduced. The decomposed independent sources
can be obtained from a linear transformation as

f̂ICA = WICA f̂ , (21)

where WICA(n×n) is termed the de-mixing matrix which
can be computed by using the Fast-ICA algorithm.

The Fast-ICA algorithm has been proposed in [4]. This
algorithm is based on fixed-point method and is represented
by

w+ = w(t) − η
E[fg(wT (t)f)] − βw(t)

E[g′(wT (t)f)] − β
, (22)

w(t + 1) =
w+

‖w+‖ , (23)

where g(y) = y3, or g(y) = tanh(y).
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Fig. 3. Pre-processing with R-mode FA.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

-10

-5

0

5

10

f1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 104

-5

0

5
f2

sample

Fig. 4. Pre-processing with Q-mode FA.

The fixed-point algorithm has a higher speed conver-
gence property since the Newton method in block mode is
applied. It is easy to apply in data analysis since there is no
learning rate parameter needs to be adjusted. Furthermore,
we can extract independent sources one by one. This means
the condition of the prior knowledge of source number will
be more relaxed.

5. COMPUTER SIMULATIONS

In this section, we have performed a simulation experiment
with one super-Gaussian source (kurtosis = 3.4274), and
one sub-Gaussian source (kurtosis = −1.5000) (see Fig.
1). Two sources were artificially mixed by a 5×2 random
numeric matrix. Five un-correlated Gaussian noises was
added to an associated element of observations (see Fig. 2).

To compare the power of the source to that of the noise,
the signal-to-noise ratio (SNR) was defined as

SNRi = 10 log
E[(

∑
k aiksk)2]

E[e2
i ]

, (24)

V - 271

➡ ➡



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 10 4

-6
-4
-2
0
2
4
6

f I
C

A   
1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 10 4

-3
-2
-1
0
1
2
3

f I
C

A   
2

sample

Fig. 5. Decomposed source signals applying R-mode FA
and ICA.
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Fig. 6. Decomposed source signals applying Q-mode FA
and ICA.

on sensor i (i = 1, · · · , 5). Using this formula, the SNR
became −7.4795 dB on sensor 2.

The R-mode FA and the Q-mode FA were used for pre-
processing of source separation. As seen from the result
of the R-mode analysis (Fig. 3), some noises were not re-
moved and the sources were still overlapping. On the other
hand, in the results of the Q-mode analysis (Fig. 4), even
though the sources were still overlapping, but the high-level
noises were almost removed.

Following this result, the Fast-ICA algorithm was used
to further separate the overlapped components. The results
of the R-mode analysis with the Fast-ICA (Fig. 5) indi-
cate that the sources were not overlapping but some noises
were not removed. On the other hand, in the results of the
Q-mode analysis with the Fast-ICA (Fig. 6), the source sig-
nals are accurately estimated and the high-level noises were
almost removed.

In order to strictly compare the results of the R-mode
and the Q-mode analysis, we defined the signal-to-error ra-

tio (SER) as

SERi = 10 log
E[(

∑
k aiksk)2]

E[(
∑

k aiksk − ∑
k âikf̂ICA k)2]

, (25)

on the sensor spaces. Here, âik denotes the coefficient to
project k-th decomposed component into i-th sensor space,
which is calculated by the R-mode or Q-mode FA and ICA.
As for the result of the R-mode analysis, the averaged SER
became 10.8383 dB. On the other hand, in the result of the
Q-mode analysis, the averaged SER became 22.5390 dB.
This result means that, when applying the Q-mode analysis,
a higher value of SER is obtained. Given these results, we
can confirm that the proposed Q-mode method is effective
for noisy signal separation and pre-processing of ICA.

6. CONCLUSIONS

In this study, we proposed the novel approach using the
Q-mode factor analysis for pre-processing of ICA. The R-
mode analyses are designed to portray the interrelationships
between variables. On the other hand, the Q-mode analysis
are designed to portray the interrelationships between ob-
jects. Applying this approach to the experimental data, we
confirmed that this technique is effective for noisy signal
separation.
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