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ABSTRACT

We present a new learning method, relative trust-region learn-
ing, where we incorporate the relative optimization technique [9]
into the trust-region method. We apply this relative trust-region
learning method to the problem of independent component anal-
ysis (ICA), which leads to the relative TR-ICA algorithm which
turns out to be faster than Newton-type ICA algorithms as well
as gradient-based ICA algorithms and to possess the equivariant
property. Empirical comparisons with several existing ICA algo-
rithms, confirm the fast convergence of the relative TR-ICA algo-
rithm.

1. INTRODUCTION

ICA is a statistical method that decomposes a multivariate data into
a linear sum of non-orthogonal basis vectors with basis coefficients
being statistically independent. The simplest form of ICA consid-
ers the noise-free linear generative model where the observation
data z(t) € R™ is assumed to be generated by

xz(t) = As(t), (1)

where A € R™*"™ contains n basis vectorsa; € R",i =1,...,n
in its columns and s(t) € R" is a latent variable vector whose
elements s;(t) are mutually independent. Given N data points,
the model Eq. (1) is written as

X = AS, (@)

where X = [z(1),...,z(N)]and S = [s(1),...,s(N)].

In general, ICA can be illustrated by a probability density
matching problem [2]. The probability density matching is re-
ferred to as the Kullback matching when the Kullback-Leibler di-
vergence is used as a measure of discrepancy between two proba-
bility distributions. The Kullback matching leads to the objective
function that has the form

N
W, X) = ~logldet W+ + 5 S (), 3

where W = A™', y = W, and ¢;(y:(t)) = — log pi (vi(t)).
The matrix W is referred to as a demixing matrix and the estimate
of latent variable vector, vy, is restored up to the scaled and re-
ordered version of the original hidden variable vector s.

In the description of our algorithms, the parameter vector is
w e RY = vec (WT) where vec(-) is the vec-function which
stacks the columns of the given matrix into one long vector. On
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the contrary, W = mat” (w). For convenience, we abuse the
function notation as follows

f(W,X) fW) = f(w),
f(IvY) = fT(W) :fT(w)v 4

where the subscript r is used to emphasize that it involves the rel-
ative mode which will be described in detail later.

Popular ICA algorithms are based on the gradient or the nat-
ural gradient method [1]. Although gradient-based algorithms are
simple and guarantee the local stability, but they are relatively slow
and require a careful choice of a learning rate, which are cumber-
some in practical applications. So, many other optimization meth-
ods have been applied to ICA.

In this paper, we present a relative trust-region learning method,
where we incorporate the relative optimization into the trust-region
method. We apply the relative trust-region learning method to the
problem of ICA, which leads to the relative TR-ICA algorithm.
The relative TR-ICA algorithm inherits various useful properties,
such as the fast convergence, stability, and the equivariant prop-
erty, from both conventional trust-region methods and the relative
optimization. Moreover, we exploit a special structure of the Hes-
sian matrix for memory-efficiency in the relative TR-ICA algo-
rithm, so that the algorithm is useful, especially for the case of
high-dimensional data. Several numerical examples confirm the
high performance of our relative TR-ICA algorithm.

2. TRUST-REGION METHODS [8]

Trust-region methods define a region around the current iterate
within which they trust the model to be an adequate representa-
tion of the objective function, and then choose the step to be the
approximate minimizer of the model in this trust-region. In effect,
they choose the direction and length of the step simultaneously. If
a step is not acceptable, they reduce the size of the region and find
a new minimizer. In general, the step direction changes whenever
the size of the trust region is altered. Let us consider an objective
function f(w) : R™ — R to be minimized with respect to the
parameter w € R™ . Fig. 1 illustrates a trust-region approach for
the minimization of an objective function f in which the current
point w™® lies at one end of a curved valley while the minimizer
w, lies at the other end. A quadratic model function m® which
has elliptical contours, is based on function and derivative infor-
mation at w*). The search direction p € R™ is determined by
solving the following subproblem:

T 1
arg min m<k)(p) =f® 4 [Vf(k)} p+-p B¥p, (5
Ipl<at 2
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Fig. 1. An illustration of the trust-region method in determining a
direction and a step size with the help of a quadratic model.

where A®) > 0 is the trust-region radius and | - || is the Euclidean
2 2
norm. Here, B®) € R™ *™" is some symmetric matrix and

1= fw®),
vi® = 2L ©)

ow w=w )

The solution pi’“) of Eq. (5) is the minimizer of m™® in the ball
with its radius being AR (See [5] for the details of Trust-Region
method and TR-ICA).

3. RELATIVE OPTIMIZATION

This section describes the relative optimization method for ICA
from the viewpoint of Lie group and equivariant property.

The serial updating where the parameters are learned in a mul-
tiplicative fashion, keeps the parameters in a group structure (es-
pecially Lie group). The relative gradient resulted from the idea of
learning in Lie group, which was first investigated by Cardoso [3].

The general linear group of degree n, denoted by GL(n), is
a set of invertible (nonsingular) n X n matrices. The general lin-
ear group is an instance of Lie group. In the case of ICA, the
parameter matrix W belongs to the general linear group GL(n).
A matrix W in GL(n) gives rise to an invertible linear transfor-
mation IT : R™ — R", defined by II(z) = Wz, and the matrix
multiplication in the group corresponds to composition of linear
transformations. Learning a demixing matrix W in ICA, can be
carried out by a linear transformation of parameters, which leads
to the following learning process

w ikt E(k)W(k), @)

where E®) is a linear transformation of parameters W) The
linear transformation E*) is computed such that an objective func-
tion (for instance, Eq. (3) in the case of ICA) is minimized on
the Lie group. Moreover, a Lie group is a differentiable manifold
obeying the group properties. Therefore, the multiplicative learn-
ing rule of W *) in Eq. (7) reflects a manifold. In fact, the natural

gradient (which is identical to the relative gradient in ICA) was
developed in the framework of learning in Riemannian manifold
[1].

A family of adaptive ICA algorithms employs an update rule
that has the form

w kD _ (k) n(k)é (X,W(k>) ’ (8)

where G ( X, W*)) is a matrix-valued function and n™ > 0is

a learning rate. Without loss of generality, the updating rule has
the form

W(k+1) _ (I _ n(k)G (Y(k)>> W(k). )

If we denote the ’plugging’ matrix (I - n(’“)G (Y“”)) by

E®_ then the parameter matrix W &+ can be decomposed into
W(k+1) _ E(k)W(k) — E(’V)E(’Cfl) . ~~E<1)E(O)W(O)7 (10)

where W (©) is an initial value of W. It follows from Eq. (10)
that the serial update rule for W ) reflects a manifold. When the
final convergence is achieved after c iterations, the stationary point
W ., also consists of series of multiplications of matrices, W, =
E.W® where E, = ECEC™D ... EOE©® Even in the
case of a different mixing matrix A’ being involved, if we set the
W (©) as an initial matrix of W such that WA = W©’ 4/,
then W, = E.,W©" and updating rules are identical to each
other, which implies the uniform performance.
An estimator A for A is said to be equivariant if it satisfies

AMX) = MA(X), (11)

for any invertible n X n matrix M. An important property induced
by an equivariant estimator is the uniform performance which im-
plies that the performance of an estimator does not depend on the
mixing matrix A in ICA. Suppose that source signals are estimated
asy = & = Wax = A~ 'x. Then, we have

5= (AX)) 'z = (A(AS)) "As = A(S)'s. (12)

Here, source signals estimated by an equivariant estimator .4 are
given by 3 = A(S) " 's, that is, they depend solely on original
source signals s. This equivariant property can be achieved by the
’serial update’.

The relative gradient involves the plugging matrix containing
the first-order information (in the sense that the gradient is used).
This can be generalized by computing the plugging matrix using
other optimization methods (for instance, Newton method). The
relative optimization [9] is summarized in Table 1.

Table 1. Relative Optimization Algorithm [9].

Start with an initial estimate W(O);
repeat k = 0,1, 2, ..., until convergence
Yy (k) — W(’d X
Starting with Y(O) = I (identity matrix),
Compute V %) which significantly decreases
the objective function,
Update W by W (F+1) — y (Rl (B) .
end (repeat)
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4. A RELATIVE TRUST-REGION METHOD

Recently the relative gradient method was further elaborated in
[9], which leads to the relative Newton method for ICA, and also
trust-region method was applied to ICA, TR-ICA [5]. Here we il-
lustrate how the relative optimization method is incorporated with
the conventional trust-region methods, which is a main contribu-
tion of our paper. The method is described mainly for the case of
ICA, which leads to the relative TR-ICA algorithm.

The relative trust-region method consists of two modes: (1)
relative mode; (2) absolute mode. In the relative mode, we con-
sider a modified quadratic model, mSk) where the subscript r rep-
resents the relative mode and find a direction p*) which solves
the following subproblem modified from Eq. (5),

T
argmin m{ (p) = £+ [V5 0] p+ 2p" V2 Pp, (13)
Ipl<a® 2

where f.(w), V£, (w) and V2 f, (w) are calculated with ¥ *)
and I instead of X and W) For the ICA, we define an n-
dimensional element-wise function ¥(y) € R"™ with its ith ele-
ment being 1;(y;) = —logp:(y:) in Eq. (3). We denote the
element-wise 1st- and 2nd-order derivatives of ¥ by v’ and ",
respectively. In relative mode, the function, the gradient and the
Hessian of ICA are

frlw) = %Zzzmyi(t)x (4
Vﬁm)—\’< Z )]%m
Vif (w) = H+ D, (16)

where I € R™*™ is the identity matrix and D € R™* %" s de-
fined in Eq. (18) and H € R™**" contains n? row vectors, Fom,
defined in Eq. (17).

The Hessian of f(w) has a special structure which permits a
fast solution of the Newton system. Taking V(© = I in Table 1
into account in the derivation, leads to

B = [vec (eje)]”, m=(i—1n+j, a7
where e; is the n-dimensional unit vector where only the jth el-
ement is 1 and other elements are zeros. If Y is close to the
original source S, then D; becomes a diagonal matrix and the ith
diagonal element of D) is given by

Jis = Zme%), (18)

where y(t) is the current estimate of the source vector s(¢).

A basic idea in modifying the quadratic model comes from
the fact that the relative optimization considers f(I,Y") instead of
f(W, X). The predicted reduction is also calculated in the rel-
ative mode, considering the modified quadratic model m®* . The
actual reduction, however, should be calculated in the original ob-

jective function f(w) instead of f,(w). Therefore, in the relative

trust-region method, the agreement measure p£ ) has the form

f (w(m) —f (w<k> +p<k>>
mi(0) = mM (p®)

(k) _

r

19)

Table 2. Relative TR-ICA Algorithm.
leenA >0,A € (0,A),and ¢ € [0, 1):
for k = 2
(Relatlve Mode )
y (k w ik
Obtain p( ) by solvin, qd
Calculate the predicted re uctlon in Eq. (19);
(Absolute Mode:)
Calculate the actual reduction in Eq. (19);

Evaluate p$ ) in Eq. (19
it p.") <L then A“H'l% =1lp

if ) > 3 and \| ®) = Ak
then N 1) _ 2A<k> A
else, then A(HU =

(k)”

if ) > ¢, then W*+D) = mat” <p<k>> w

else, then W F+1) = (%)
end (for)

Then TR method determines the size of trust-region and finally
parameters W are serially updated (like the relative optimization).
The relative TR is summarized in Table 2.

In the relative mode, the direction p*’ is computed by solving
the modified subproblem (13) which is involved with the calcula-
tion of the Hessian matrix V2 £, in order to compute [VQfT] -t Vf.
and vTV2f, where v is a gradient or other learning directions.
In the case of high-dimensional data, the Hessian matrix takes a
huge memory space. As in the fast relative Newton method [9],
we use the modified Newton direction which is found at low com-
putational complexity, in order to take care of [V*f, ] vy,
In addition, we show that the term v7 V> f,. in (13) can be easily
computed, due to a special structure of H and D in Eq. (16).

5. NUMERICAL EXPERIMENTS

We used 2 different data sets for our numerical experiments. The
first set of data contains the mixtures of two speech signals and
one music signal, all of them were sampled at 8 kHz. The second
data set is the USPS data which contains handwritten digits that
are converted to 256-dimensional data (16 x 16 = 256) of length
4000.

The optimization methods in ICA that we compared our rela-
tive TR-ICA with, include (1) the gradient; (2) the natural gradient;
(3) TR-ICA (with the dogleg implementation); (4) the fast relative
Newton [9]. In the gradient, the natural gradient and Newton’s
methods, an optimal learning rate was determined by the back-
tracking line search method (see [5] for the details).

5.1. Ill-conditioned Mixing Matrix

Relative optimization (or the natural gradient) was shown to have
the equivariant property [4, 1, 6, 9] where the performance did not
depend on the condition of a mixing matrix. In the experiment,
3-dimensional sound signals were artificially mixed using an ill-
conditioned mixing matrix where its condition number is 525.44.
Fig. 2 shows the convergence behavior of various ICA algo-
rithms for the case of 3-dimensional sound data. The relative al-
gorithms (both Newton and trust-region) made convergence much
faster than the gradient-based algorithms. Once again, the relative

V-263



TR-ICA algorithm was the fastest one among all algorithms that
we tested.
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Fig. 2. Convergence comparison of several numerical optimiza-
tion methods in the quasi maximum likelihood ICA for a set of
3-dimensional sound data (ill-conditioned mixing matrix).

5.2. High-Dimensional Data

For the case of USPS data set, the computation of Hessian ma-
trix at each iteration is very expensive and the Hessian matrix is
not positive definite at some iteration steps. Moreover, if dimen-
sion is very high (more than 30), then conventional trust-region
methods cause a memory problem. However, the relative TR-ICA
algorithm overcomes these limits by using a trick for memory-
efficiency.

Table 3 shows that our proposed algorithm is faster than any
other methods in high dimensional data set. In the numerical ex-
periment, we chose the portion associated with the digit "2’ and
reduced the dimension by PCA, which produced 100-dimensional
data of length 379. In such a case, FastICA [7] had difficulty in
convergence because the number of data points were not enough.
The small number of data points does not guarantee the objective
function to be a contraction map which is a necessary condition for
the fixed point algorithm. On the other hand, the natural gradient
and the relative ICA algorithms including our proposed algorithm
worked fine. In such high-dimensional data, our relative TR-ICA
algorithm showed fastest convergence. For the measure of con-
vergence, we specified the error to be inside the tolerance level in
advance (here we use 10™°). Moreover, in Table 3, even the it-
eration number of relative TR-ICA is much less than fast relative
Newton’s, as well as the CPU time. This means that the objec-
tive functions for high-dimensional real data have difficulty to be
modelled with quadratic equation, so the recommended learning
direction of trust-region method is better than Newton’s.

6. CONCLUSION

We have introduced a relative trust-region method which jointly
exploited the trust-region method and the relative optimization. In
the relative trust-region method, a direction and a step size were
searched with the help of a quadratic model (just like the trust-
region method) and the parameters were serially updated (relative

Table 3. Convergence comparison of several numerical optimiza-
tion methods in the quasi maximum likelihood ICA for digit "2’
among USPS data (Dimension is reduced into 100 by PCA).

Methods Iteration Number | Total Time
Natural Grad. 3415 731.375(s)
Relative TR 763 109.063(s)
Fast Rel. Newton 1147 269.407(s)

optimization). We have applied this relative trust-region method to
the problem of ICA, which led to the relative TR-ICA algorithm
which consisted of the relative mode and the absolute mode. The
relative TR-ICA algorithm enjoyed fast convergence, compared to
most of existing ICA algorithms and showed the equivariant prop-
erty like the natural or the relative gradient. Moreover exploiting a
special structure of the Hessian matrix in the relative mode led to
a memory-efficient relative TR-ICA algorithm which could handle
high-dimensional data. In experiment, the useful behavior and the
high performance of the relative TR-ICA algorithm were observed.

Although we focused on ICA, the relative trust-region method
could be applied to other machine learning problems.
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