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ABSTRACT

We present a new learning method, relative trust-region learn-
ing, where we incorporate the relative optimization technique [9]
into the trust-region method. We apply this relative trust-region
learning method to the problem of independent component anal-
ysis (ICA), which leads to the relative TR-ICA algorithm which
turns out to be faster than Newton-type ICA algorithms as well
as gradient-based ICA algorithms and to possess the equivariant
property. Empirical comparisons with several existing ICA algo-
rithms, confirm the fast convergence of the relative TR-ICA algo-
rithm.

1. INTRODUCTION

ICA is a statistical method that decomposes a multivariate data into
a linear sum of non-orthogonal basis vectors with basis coefficients
being statistically independent. The simplest form of ICA consid-
ers the noise-free linear generative model where the observation
data x(t) ∈ R

n is assumed to be generated by

x(t) = As(t), (1)

where A ∈ R
n×n contains n basis vectors ai ∈ R

n, i = 1, . . . , n
in its columns and s(t) ∈ R

n is a latent variable vector whose
elements si(t) are mutually independent. Given N data points,
the model Eq. (1) is written as

X = AS, (2)

where X = [x(1), . . . , x(N)] and S = [s(1), . . . , s(N)].
In general, ICA can be illustrated by a probability density

matching problem [2]. The probability density matching is re-
ferred to as the Kullback matching when the Kullback-Leibler di-
vergence is used as a measure of discrepancy between two proba-
bility distributions. The Kullback matching leads to the objective
function that has the form

f(W , X) = − log |det W | +
1

N

N∑
t=1

n∑
i=1

ψi(yi(t)), (3)

where W = A−1, y = W x, and ψi(yi(t)) = − log pi(yi(t)).
The matrix W is referred to as a demixing matrix and the estimate
of latent variable vector, y, is restored up to the scaled and re-
ordered version of the original hidden variable vector s.

In the description of our algorithms, the parameter vector is
w ∈ R

n2

= vec
(
W T

)
where vec(·) is the vec-function which

stacks the columns of the given matrix into one long vector. On

the contrary, W = matT (w). For convenience, we abuse the
function notation as follows

f(W , X) = f(W ) = f(w),

f(I , Y ) = fr(W ) = fr(w), (4)

where the subscript r is used to emphasize that it involves the rel-
ative mode which will be described in detail later.

Popular ICA algorithms are based on the gradient or the nat-
ural gradient method [1]. Although gradient-based algorithms are
simple and guarantee the local stability, but they are relatively slow
and require a careful choice of a learning rate, which are cumber-
some in practical applications. So, many other optimization meth-
ods have been applied to ICA.

In this paper, we present a relative trust-region learning method,
where we incorporate the relative optimization into the trust-region
method. We apply the relative trust-region learning method to the
problem of ICA, which leads to the relative TR-ICA algorithm.
The relative TR-ICA algorithm inherits various useful properties,
such as the fast convergence, stability, and the equivariant prop-
erty, from both conventional trust-region methods and the relative
optimization. Moreover, we exploit a special structure of the Hes-
sian matrix for memory-efficiency in the relative TR-ICA algo-
rithm, so that the algorithm is useful, especially for the case of
high-dimensional data. Several numerical examples confirm the
high performance of our relative TR-ICA algorithm.

2. TRUST-REGION METHODS [8]

Trust-region methods define a region around the current iterate
within which they trust the model to be an adequate representa-
tion of the objective function, and then choose the step to be the
approximate minimizer of the model in this trust-region. In effect,
they choose the direction and length of the step simultaneously. If
a step is not acceptable, they reduce the size of the region and find
a new minimizer. In general, the step direction changes whenever
the size of the trust region is altered. Let us consider an objective
function f(w) : R

n2

→ R to be minimized with respect to the

parameter w ∈ R
n2

. Fig. 1 illustrates a trust-region approach for
the minimization of an objective function f in which the current
point w(k) lies at one end of a curved valley while the minimizer
w∗ lies at the other end. A quadratic model function m(k) which
has elliptical contours, is based on function and derivative infor-
mation at w(k). The search direction p ∈ R

n2

is determined by
solving the following subproblem:

arg min
‖p‖≤�(k)

m
(k)(p) = f

(k) +
[
∇f

(k)
]T

p +
1

2
p

T
B

(k)
p, (5)
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Fig. 1. An illustration of the trust-region method in determining a
direction and a step size with the help of a quadratic model.

where �(k) > 0 is the trust-region radius and ‖·‖ is the Euclidean

norm. Here, B(k) ∈ R
n2×n2

is some symmetric matrix and

f
(k) = f(w(k)),

∇f
(k) =

∂f

∂w

∣∣∣∣
w=w(k)

. (6)

The solution p(k)
∗ of Eq. (5) is the minimizer of m(k) in the ball

with its radius being �(k). (See [5] for the details of Trust-Region
method and TR-ICA).

3. RELATIVE OPTIMIZATION

This section describes the relative optimization method for ICA
from the viewpoint of Lie group and equivariant property.

The serial updating where the parameters are learned in a mul-
tiplicative fashion, keeps the parameters in a group structure (es-
pecially Lie group). The relative gradient resulted from the idea of
learning in Lie group, which was first investigated by Cardoso [3].

The general linear group of degree n, denoted by GL(n), is
a set of invertible (nonsingular) n × n matrices. The general lin-
ear group is an instance of Lie group. In the case of ICA, the
parameter matrix W belongs to the general linear group GL(n).
A matrix W in GL(n) gives rise to an invertible linear transfor-
mation Π : R

n → R
n, defined by Π(x) = W x, and the matrix

multiplication in the group corresponds to composition of linear
transformations. Learning a demixing matrix W in ICA, can be
carried out by a linear transformation of parameters, which leads
to the following learning process

W
(k+1) = E

(k)
W

(k)
, (7)

where E(k) is a linear transformation of parameters W (k). The
linear transformation E(k) is computed such that an objective func-
tion (for instance, Eq. (3) in the case of ICA) is minimized on
the Lie group. Moreover, a Lie group is a differentiable manifold
obeying the group properties. Therefore, the multiplicative learn-
ing rule of W (k) in Eq. (7) reflects a manifold. In fact, the natural

gradient (which is identical to the relative gradient in ICA) was
developed in the framework of learning in Riemannian manifold
[1].

A family of adaptive ICA algorithms employs an update rule
that has the form

W
(k+1) = W

(k) − η
(k)

G̃
(
X , W

(k)
)

, (8)

where G̃
(
X , W (k)

)
is a matrix-valued function and η(k) > 0 is

a learning rate. Without loss of generality, the updating rule has
the form

W
(k+1) =

(
I − η

(k)
G

(
Y

(k)
))

W
(k)

. (9)

If we denote the ’plugging’ matrix
(
I − η(k)G

(
Y (k)

))
by

E(k), then the parameter matrix W (k+1) can be decomposed into

W
(k+1) = E

(k)
W

(k) = E
(k)

E
(k−1) · · ·E(1)

E
(0)

W
(0)

, (10)

where W (0) is an initial value of W . It follows from Eq. (10)
that the serial update rule for W (k) reflects a manifold. When the
final convergence is achieved after c iterations, the stationary point
W ∗ also consists of series of multiplications of matrices, W ∗ =
E∗W

(0) where E∗ = E(c)E(c−1) · · ·E(1)E(0). Even in the
case of a different mixing matrix A′ being involved, if we set the
W (0)′ as an initial matrix of W such that W (0)A = W (0)′A′,
then W ∗ = E∗W

(0)′ and updating rules are identical to each
other, which implies the uniform performance.

An estimator A for A is said to be equivariant if it satisfies

A(MX) = MA(X), (11)

for any invertible n×n matrix M . An important property induced
by an equivariant estimator is the uniform performance which im-
plies that the performance of an estimator does not depend on the
mixing matrix A in ICA. Suppose that source signals are estimated
as y = ŝ = W x = A−1x. Then, we have

ŝ = (A(X))−1
x = (A(AS))−1

As = A(S)−1
s. (12)

Here, source signals estimated by an equivariant estimator A are
given by ŝ = A(S)−1s, that is, they depend solely on original
source signals s. This equivariant property can be achieved by the
’serial update’.

The relative gradient involves the plugging matrix containing
the first-order information (in the sense that the gradient is used).
This can be generalized by computing the plugging matrix using
other optimization methods (for instance, Newton method). The
relative optimization [9] is summarized in Table 1.

Table 1. Relative Optimization Algorithm [9].
Start with an initial estimate W (0);
repeat k = 0, 1, 2, ..., until convergence

Y (k) = W (k)X ;
Starting with V (0) = I (identity matrix),
Compute V (k) which significantly decreases
the objective function.
Update W by W (k+1) = V (k)W (k) ;

end (repeat)

V - 262

➡ ➡



4. A RELATIVE TRUST-REGION METHOD

Recently the relative gradient method was further elaborated in
[9], which leads to the relative Newton method for ICA, and also
trust-region method was applied to ICA, TR-ICA [5]. Here we il-
lustrate how the relative optimization method is incorporated with
the conventional trust-region methods, which is a main contribu-
tion of our paper. The method is described mainly for the case of
ICA, which leads to the relative TR-ICA algorithm.

The relative trust-region method consists of two modes: (1)
relative mode; (2) absolute mode. In the relative mode, we con-
sider a modified quadratic model, m

(k)
r where the subscript r rep-

resents the relative mode and find a direction p(k) which solves
the following subproblem modified from Eq. (5),

arg min
‖p‖≤�(k)

m
(k)
r (p) = f

(k)
r +

[
∇f

(k)
r

]T

p +
1

2
p

T∇2
f

(k)
r p, (13)

where fr(w),∇f r(w) and ∇2f r(w) are calculated with Y (k)

and I instead of X and W (k). For the ICA, we define an n-
dimensional element-wise function ψ(y) ∈ R

n with its ith ele-
ment being ψi(yi) = − log pi(yi) in Eq. (3). We denote the
element-wise 1st- and 2nd-order derivatives of ψ by ψ′ and ψ′′,
respectively. In relative mode, the function, the gradient and the
Hessian of ICA are

fr(w) =
1

N

N∑
t=1

n∑
i=1

ψi(yi(t)), (14)

∇f r(w) = vec

(
−I +

1

N

N∑
t=1

y(t)
[
ψ

′(y(t))
]T

)
,(15)

∇2
f r(w) = H + D, (16)

where I ∈ R
n×n is the identity matrix and D ∈ R

n2×n2

is de-
fined in Eq. (18) and H ∈ R

n2×n2

contains n2 row vectors, �hm,
defined in Eq. (17).

The Hessian of fr(w) has a special structure which permits a
fast solution of the Newton system. Taking V (0) = I in Table 1
into account in the derivation, leads to

�hm = [vec (ejei)]
T

, m = (i − 1)n + j, (17)

where ej is the n-dimensional unit vector where only the jth el-
ement is 1 and other elements are zeros. If Y (k) is close to the
original source S, then Dl becomes a diagonal matrix and the ith
diagonal element of Dl is given by

[Dl]ii =
1

T

∑
t

ψ
′′
l (yl(t))y

2
i (t), (18)

where y(t) is the current estimate of the source vector s(t).
A basic idea in modifying the quadratic model comes from

the fact that the relative optimization considers f(I , Y ) instead of
f(W , X). The predicted reduction is also calculated in the rel-
ative mode, considering the modified quadratic model m

(k)
r . The

actual reduction, however, should be calculated in the original ob-
jective function f(w) instead of fr(w). Therefore, in the relative
trust-region method, the agreement measure ρ

(k)
r has the form

ρ
(k)
r =

f
(
w(k)

)
− f

(
w(k) + p(k)

)
m

(k)
r (0) − m

(k)
r (p(k))

. (19)

Table 2. Relative TR-ICA Algorithm.
Given �̂ > 0, �(0) ∈ (0, �̂), and ζ ∈ [0, 1

4
):

for k = 0, 1, 2, . . .
(Relative Mode:)
Y (k) = W (k)X
Obtain p(k) by solving Eq. (13);
Calculate the predicted reduction in Eq. (19);

(Absolute Mode:)
Calculate the actual reduction in Eq. (19);

Evaluate ρ
(k)
r in Eq. (19)

if ρ
(k)
r < 1

4
, then �(k+1) = 1

4
‖p(k)‖

else
if ρ

(k)
r > 3

4
and ‖p(k)‖ = �(k),

then �(k+1) = min(2�(k), �̂)
else, then �(k+1) = �(k);

if ρ
(k)
r > ζ, then W (k+1) = matT

(
p(k)

)
W (k)

else, then W (k+1) = W (k)

end (for)

Then TR method determines the size of trust-region and finally
parameters W are serially updated (like the relative optimization).
The relative TR is summarized in Table 2.

In the relative mode, the direction p(k) is computed by solving
the modified subproblem (13) which is involved with the calcula-
tion of the Hessian matrix∇2f r in order to compute

[
∇2f r

]−1
∇f r

and vT∇2f r where v is a gradient or other learning directions.
In the case of high-dimensional data, the Hessian matrix takes a
huge memory space. As in the fast relative Newton method [9],
we use the modified Newton direction which is found at low com-
putational complexity, in order to take care of

[
∇2f r

]−1
∇f r .

In addition, we show that the term vT∇2f r in (13) can be easily
computed, due to a special structure of H and D in Eq. (16).

5. NUMERICAL EXPERIMENTS

We used 2 different data sets for our numerical experiments. The
first set of data contains the mixtures of two speech signals and
one music signal, all of them were sampled at 8 kHz. The second
data set is the USPS data which contains handwritten digits that
are converted to 256-dimensional data (16 × 16 = 256) of length
4000.

The optimization methods in ICA that we compared our rela-
tive TR-ICA with, include (1) the gradient; (2) the natural gradient;
(3) TR-ICA (with the dogleg implementation); (4) the fast relative
Newton [9]. In the gradient, the natural gradient and Newton’s
methods, an optimal learning rate was determined by the back-
tracking line search method (see [5] for the details).

5.1. Ill-conditioned Mixing Matrix

Relative optimization (or the natural gradient) was shown to have
the equivariant property [4, 1, 6, 9] where the performance did not
depend on the condition of a mixing matrix. In the experiment,
3-dimensional sound signals were artificially mixed using an ill-
conditioned mixing matrix where its condition number is 525.44.

Fig. 2 shows the convergence behavior of various ICA algo-
rithms for the case of 3-dimensional sound data. The relative al-
gorithms (both Newton and trust-region) made convergence much
faster than the gradient-based algorithms. Once again, the relative
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TR-ICA algorithm was the fastest one among all algorithms that
we tested.
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Fig. 2. Convergence comparison of several numerical optimiza-
tion methods in the quasi maximum likelihood ICA for a set of
3-dimensional sound data (ill-conditioned mixing matrix).

5.2. High-Dimensional Data

For the case of USPS data set, the computation of Hessian ma-
trix at each iteration is very expensive and the Hessian matrix is
not positive definite at some iteration steps. Moreover, if dimen-
sion is very high (more than 30), then conventional trust-region
methods cause a memory problem. However, the relative TR-ICA
algorithm overcomes these limits by using a trick for memory-
efficiency.

Table 3 shows that our proposed algorithm is faster than any
other methods in high dimensional data set. In the numerical ex-
periment, we chose the portion associated with the digit ’2’ and
reduced the dimension by PCA, which produced 100-dimensional
data of length 379. In such a case, FastICA [7] had difficulty in
convergence because the number of data points were not enough.
The small number of data points does not guarantee the objective
function to be a contraction map which is a necessary condition for
the fixed point algorithm. On the other hand, the natural gradient
and the relative ICA algorithms including our proposed algorithm
worked fine. In such high-dimensional data, our relative TR-ICA
algorithm showed fastest convergence. For the measure of con-
vergence, we specified the error to be inside the tolerance level in
advance (here we use 10−5). Moreover, in Table 3, even the it-
eration number of relative TR-ICA is much less than fast relative
Newton’s, as well as the CPU time. This means that the objec-
tive functions for high-dimensional real data have difficulty to be
modelled with quadratic equation, so the recommended learning
direction of trust-region method is better than Newton’s.

6. CONCLUSION

We have introduced a relative trust-region method which jointly
exploited the trust-region method and the relative optimization. In
the relative trust-region method, a direction and a step size were
searched with the help of a quadratic model (just like the trust-
region method) and the parameters were serially updated (relative

Table 3. Convergence comparison of several numerical optimiza-
tion methods in the quasi maximum likelihood ICA for digit ’2’
among USPS data (Dimension is reduced into 100 by PCA).

Methods Iteration Number Total Time
Natural Grad. 3415 731.375(s)
Relative TR 763 109.063(s)
Fast Rel. Newton 1147 269.407(s)

optimization). We have applied this relative trust-region method to
the problem of ICA, which led to the relative TR-ICA algorithm
which consisted of the relative mode and the absolute mode. The
relative TR-ICA algorithm enjoyed fast convergence, compared to
most of existing ICA algorithms and showed the equivariant prop-
erty like the natural or the relative gradient. Moreover exploiting a
special structure of the Hessian matrix in the relative mode led to
a memory-efficient relative TR-ICA algorithm which could handle
high-dimensional data. In experiment, the useful behavior and the
high performance of the relative TR-ICA algorithm were observed.

Although we focused on ICA, the relative trust-region method
could be applied to other machine learning problems.
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