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ABSTRACT

A class of variable step-size algorithms for complex-valued
nonlinear neural adaptive finite impulse response (FIR) fil-
ters realised as a dynamical perceptron is proposed. The
adaptive step-size is updated using gradient descent to give
variable step-size complex-valued nonlinear gradient descent
(VSCNGD) algorithms. These algorithms are shown to be
capable of tracking signals with rich and unknown dynam-
ics, and exhibit faster convergence and smaller steady state
error than the standard algorithms. Further, the analysis of
stability and computational complexity is provided. Simu-
lations in the prediction setting support the approach.

1. INTRODUCTION

Real-valued adaptive filters have been used for processing
signals in various disiplines such as acoustics, communica-
tions and seismology. The least mean square (LMS) algo-
rithm [1] is one of the most common approaches to train
linear adaptive filters. Despite its roboustness, this algo-
rithm is relatively slow at converging to the optimal least
squares solution. A number of variable step-size least mean
square (VSLMS) algorithms have been developed to speed
up convergence of linear adaptive filters [2, 3, 4]. Gen-
erally, the idea behind variable step-size is to have large
step-sizes when the estimated errors are large at the early
stages of adaptation, and smaller step-sizes when approach-
ing steady-state convergence. This helps to avoid the trade-
off between fast convergence and misadjustment, commonly
experienced with the fixed step-size LMS.

To that end, Benveniste ef al. [2] propose and analyse an
adaptive step-size algorithm based on the gradient of the
instantaneous squared error with respect to the step-size.
Benveniste’s algorithm, in fact, performs time-varying low
pass filtering of the noisy instantaneous gradients in the up-
date of the step-size. This algorithm was derived rigorously
without making the usual independence assumptions, which

results in better performance but increased computational
complexity as compared to standard LMS. Attempts to re-
duce the computational complexity of this algorithm include
the Mathews and Xie [3] and Ang and Farhang-Boroujeny
[4] algorithm. In [4], a fixed parameter low pass filter re-
places time-varying filtering of the instantaneous gradients
in the step-size update from [2], whereas in Mathews and
Xie’s algorithm, only raw instantaneous gradients are used,
which makes this algorithm sensitive to initial conditions
and noise. One advantage of algorithms from [3] and [4]
over Benveniste’s algorithm is their relative simplicity, at
the cost of possible performance degradation.

Recently, there has been much research directed towards de-
velopment and analysis of complex-valued adaptive filters,
especially nonlinear ones. The applications of these filters
are emerging and the theory of complex-valued nonlinear
adaptive filters is following this development [5]. Our aim
is to extend the class of gradient adaptive step-size algo-
rithms to the case of complex-valued nonlinear adaptive fil-
ters. The derivation of the proposed class of variable step-
size complex-valued nonlinear gradient descent (VSCNGD)
algorithms follows the approaches from [2, 3, 4]. Notice,
however, that extensions to the nonlinear case in the com-
plex domain are non-trivial. For generality, we focus on
filters with a ‘fully’ complex nonlinear activation function
(AF)! of a neuron, where the nonlinearity within the com-
plex AF must be analytic and bounded almost everywhere in
the complex domain, C [6]. This way, the Cauchy-Riemann 2
equations are satisfied which makes it possible to use gra-
dient descent. The analysis is supported by simulations on
colored, nonlinear and real-world signals.

In a previously frequently used split-complex AF, the real and imag-
inary components of the input signal = are separated and fed through the
real-valued AF fr(z) = fr(z), ¢ € R. A split-complex AF is therefore
given as f(z) = fr(Re(z)) + jfr(Im(z)), hence these functions are
not analytic.

2Cauchy-Riemann equations state that the partial derivatives of a func-
tion f(z) = u(z,y) + jv(zx,y) along the real and imaginary axes should
be equal: f/(z) = ¥ +j% = ?TZ fjg—z. This way g—; =0v 0v _
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2. CLASS OF VARIABLE STEP-SIZE CNGD
ALGORITHMS
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From (6), we now arrive at ¥ (k), which gives VSCNGD1

P(k) =Pk -1)[I
—nk=1)|®" (k- 1) x*(k — )xT(k — 1)
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Fig. 1. A complex-valued dynamical perceptron (FIR filter)

The weight update of the standard CNGD algorithm shown
for nonlinear FIR adaptive filter (Fig. 1) is expressed as [7]:

w(k + 1) = w(k) + ne(k) [®' (xF (k)w(k))] " x* (k) (1)

where e(k) = d(k) — ®(xT(k)w(k)) denotes the instanta-
neous error at the output of the filter at the time instant £,

d(k) is the desired signal, x(k) = [z(k — 1), ..., z(k — M)]"

is the input signal, M is the length of the filter, (-)” is the
vector transpose operator, (-)* is the complex conjugate op-
erator, and w(k) = [w1 (k), ..., wy(k)]” is the filter coef-
ficient vector. The parameter 7 is the step-size and is critical
to the convergence of the algorithms, whereas ® denotes the
complex activation function.

2.1. Variable Step-Size CNGD (VSCNGD1) Algorithm

To cater for the unknown dynamics of the inputs and their
possible nonstationary nature, we propose to make the step-
size n in (1) gradient adaptive, as

n(k) =n(k—-1) - PvnE(k)ln:n(k—l) (2)
where E(k) = e(k)e*(k) = 1 [e(k)|” is the cost function.
The gradient V,, E(k) can be evaluated as

1 oe* (k) Oe(k)
Va,E(k) == |e(k) ———= (k) =———
To calculate the two partial derivatives from (3), it is neces-
sary to use the Cauchy-Riemann equations to obtain?

3

Oe” ! « OwW"
W(f)n = —x"(k) {@'(x" (k)w(k)) } W@l) €
Oe(k) , ow(k)
k=1 —x!'(k)® (xT(k)w(k))m 5)
For simplicity, we denote ®(x” (k)w(k)) = ®(k) and
(JEEVT@Q = (k). Thus, from (1) we have
Y(k) = (k- 1)
on(k —1) , .
+ me(k—l){@ (k—1)} x*(k—1)
Oe(k—1) _, . .
+ n(k—l)m{cb (k—1)}Y x"(k—1)
of{e'(k—1)}" ,
+ nk—=1ek— 1)Wx (k—1)
+ k= 1)e(k— 1) (@' (k- 1)) XEZD )

on(k —1)

3Full derivation will be omitted due to space limitation.

ek —1){®' (k- 1)} x*(k - 1) @)

Finally we obtain the gradientupdate as V, E(k) = —3 [e(k)
{@'(k)}" xH (k)™ (k) + e* (k)®' (k)xT (k) (k)]. Notice
that ¥ consists of the instantaneous gradient term e(k —
1){®'(k—1)}" x*(k — 1) and a filtered version of ¥ (the
term in the square brackets).

2.2. Variable Step-Size CNGD (VSCNGD?2) Algorithm

The adaptive step-size in (7) is rigorously derived by ex-
tending the approach from Benveniste to the nonlinear com-
plex case. Next, for simplicity, following [4], we replace the
square bracket term in equation (7) by a constant 0 < a <
1. This leads to the VSCNGD?2 algorithm given by

P(k) = ap(k—1)+e(k—1){®'(k — 1)} x"(k—1) (8)

For a < 1, equation (7) represents a low pass filter that takes
the weighted average of the present and past observations of
the instantaneous gradients e(k—1) {®'(k — 1)} x* (k—1).

2.3. Variable Step-Size CNGD (VSCNGD3) Algorithm

When o = 0, (which analogous to [3]), the VSCNGD3 al-
gorithm, which is the simplest of the three proposed algo-
rithms is obtained. Table 1 summarizes the three proposed
algorithms, selection of initial parameters, and the number
of complex multiplications involved.

3. STABILITY ANALYSIS

We next employ the contraction mapping principle to illus-
trate the mean square convergence of the proposed algo-
rithms and set bounds on the values of the step-size. By the
Contraction Mapping Theorem (CMT), function F' : Z —
Z is a contraction if [8]

|[F(z) = F(y)| <vlz—y| Va,yeZ )
where 0 < v < 1. According to Banach’s fixed point the-
orem, contractive functions have at most one fixed point,
where for every z € Z, |F™(z) — F”H(a:)| — 0asn —
oo. To make use of CMT, let v(k) = w(k) — w,p;, and
subtract (1) W, from both side of (1), to give

v(k +1) = v(k) + n(k)e(k) [&' (k)] x* (k)
= (k) = n(k) [ (k)] x* (k) [(x" (k)w(k))
= (T (k)Wope)] + 1(k)eope [ ()] X" (k) (10)
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Table 1. Classification of VSCNGD algorithms and complexity

Algorithms Variable step-size update Parameters No. of. mul.
VSCNGD!1 | ¥(k) =¥k —1) lI —n(k—=1)|9' (k- 1)’ x*(k — 1)xT(k — 1) | 5(0)=0.05, p=0.0002 16M
+n(k — e(k — 1) {®"(k — 1)} x*(k — 1)x" (k — 1)]
+e(k —1){®'(k — 1)} "x*(k—1)
VSCNGD2 PYk)=ap(k—1)+e(k—1){®(k—1)} x*(k—1) a=0.95 oM
1(0)=0.05, p=0.0002
VSCNGD3 (k) =elk—1){®(k—-1)} z*(k—1) 1(0)=0.05, p=0.0002 &M
The activation function of a neuron used here is a complex 2(k) = S5z(k —1)z(k - 2)
hyperbolic tangent, ®(z) = EZ:;%. Using the condition 1+ 22(k —1) +22(k — 2) + 22(k — 3)
from (9), Vz,y € [a,b], 3¢ € (a,b), such that [9] + r(k—1)+08r(k—2) (16)

[tanh(z) — tanh(y)| < |tanh'(€)||z — y| (11)
Combining (11) and (10), we have
v(k+1) < [T=n(k) [@'(k)]" @' ()x* (k)x" (k)] v(k) (12)

where the inhomogeneous part of (10) (k) e o, [®' (k)] x* (k)

can be ignored in the convergence analysis. By taking the
expectation of squared /> —norm in (12), we obtain

E|[v(k +1)|l; < A[E[B]JE ||v(k)l5 (13)

where A[E[B?]] is the maximum eigenvalue of
E[B?] = E [I- (k) [®'(k)]" @ (€)x* (k)x" (k)]°. Com-
bining the condition from (13) with CMT principle (9), we
have A[E[B?]] < v* < 1. Thus, the upper bound for the
step-size (k) is given as

2
22+ tr(Ry)] [ (0] &'(6)]

0 <nk) < (14)
where A is the maximum eigenvalue of the autocorrelation
matrix R},.

4. SIMULATIONS

In all the experiments, the order of the nonlinear adaptive
filter was chosen to be M = 4, with # = 1. Simulations
were undertaken by averaging 200 iterations of independent
trials on prediction of complex-valued benchmark colored
and nonlinear signals as well as on real-life signals. The
colored signal was a complex linear AR(4) process given
by r(k) = 1.797(k — 1) — 1.85r(k — 2) + 1.27r(k —
3) + 0.41r(k — 4) + n(k) with complex white Gaussian
noise (CWGN) n(k) ~ N(0,1) as the driving input. The
CWGN can be expressed as n(k) = n"(k) + jn‘(k). The
real and imaginary components of CWGN were mutually
statistically independent sequences having equal variances
so that o3 = o2, + o2,. The nonlinear input signals were
NL1 and NL2 [10], given respectively in (15) and (16)

z2(k—=1)z(k—2)[z(k — 1) + 2.5]
14+22(k—1)+22(k—2)

z(k) = +r(k—1) (15)

To further verify the approach, we also tested the proposed
algorithms on real-world signals, including the radar and
wind signals. The measurement used to assess the perfor-
mance was the prediction gain R, = 10logio (Z—“Z) [dB]
[1], where o2 denotes the variance of the input signal z(k),
and 62 denotes the estimated variance of the forward pre-
diction error e(k). Figures 2a and 3a show the performance
of CNGD, VSCNGDI1, VSCNGD2 and VSCNGD3 algo-
rithms on colored (AR(4)) and nonlinear (15) inputs. Ob-
serve that VSCNGDI has the fastest convergence compared
to the rest of the algorithms for both inputs. In a general
case, depending on the signal, VSCNGD3 exhibited similar
or slightly worst performance than the CNGD algorithm.
Figures 2b and 3b illustrate a time variation of the step-size
n(k). Table 2 shows the comparison of prediction gains
between the CNGD and the proposed algorithms for both
benchmark and real-life radar and wind complex signals. In
all the cases, VSCNGD1 gave best performance, followed
by VSCNGD2 and VSCNGD3.

Table 2. Prediction gain I, for CNGD and proposed algo-
rithms on various signals

R, [dB] | AR@) | NL2 | Wind | Radar
CNGD | 5.010 | 1.710 | 14.121 | 10.888
VSCNGDI | 6.606 | 4.774 | 16.7957 | 14.060
VSCNGD2 | 6.271 | 4493 | 16.093 | 15.384
VSCNGD3 | 4.099 | 1.877 | 14297 | 13.162

5. CONCLUSIONS

The step-size in the CNGD algorithm for simple complex-
valued nonlinear neural adaptive filters has been made adap-
tive using a gradient descent based approach to give a class
of variable step-size complex-valued nonlinear gradient de-
scent (VSCNGD) algorithms. These algorithms have been
developed for a general complex nonlinear activation func-
tion of a neuron. The convergence analysis has been per-
formed and the proposed algorithms have been shown to
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Fig. 2. Performance of CNGD, VSCNGD1, VSCNGD2 and
VSCNGD3 on prediction of colored (AR(4)) input

converge faster than the standard CNGD algorithm. Exper-
iments on both (linear and nonlinear) benchmark and real-
life complex signals support the analysis.
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