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ABSTRACT

A class of variable step-size algorithms for complex-valued
nonlinear neural adaptive finite impulse response (FIR) fil-
ters realised as a dynamical perceptron is proposed. The
adaptive step-size is updated using gradient descent to give
variable step-size complex-valuednonlinear gradient descent
(VSCNGD) algorithms. These algorithms are shown to be
capable of tracking signals with rich and unknown dynam-
ics, and exhibit faster convergence and smaller steady state
error than the standard algorithms. Further, the analysis of
stability and computational complexity is provided. Simu-
lations in the prediction setting support the approach.

1. INTRODUCTION

Real-valued adaptive filters have been used for processing
signals in various disiplines such as acoustics, communica-
tions and seismology. The least mean square (LMS) algo-
rithm [1] is one of the most common approaches to train
linear adaptive filters. Despite its roboustness, this algo-
rithm is relatively slow at converging to the optimal least
squares solution. A number of variable step-size least mean
square (VSLMS) algorithms have been developed to speed
up convergence of linear adaptive filters [2, 3, 4]. Gen-
erally, the idea behind variable step-size is to have large
step-sizes when the estimated errors are large at the early
stages of adaptation, and smaller step-sizes when approach-
ing steady-state convergence. This helps to avoid the trade-
off between fast convergenceand misadjustment, commonly
experienced with the fixed step-size LMS.
To that end, Benveniste et al. [2] propose and analyse an
adaptive step-size algorithm based on the gradient of the
instantaneous squared error with respect to the step-size.
Benveniste’s algorithm, in fact, performs time-varying low
pass filtering of the noisy instantaneous gradients in the up-
date of the step-size. This algorithm was derived rigorously
without making the usual independence assumptions, which
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results in better performance but increased computational
complexity as compared to standard LMS. Attempts to re-
duce the computational complexity of this algorithm include
the Mathews and Xie [3] and Ang and Farhang-Boroujeny
[4] algorithm. In [4], a fixed parameter low pass filter re-
places time-varying filtering of the instantaneous gradients
in the step-size update from [2], whereas in Mathews and
Xie’s algorithm, only raw instantaneous gradients are used,
which makes this algorithm sensitive to initial conditions
and noise. One advantage of algorithms from [3] and [4]
over Benveniste’s algorithm is their relative simplicity, at
the cost of possible performance degradation.
Recently, there has been much research directed towards de-
velopment and analysis of complex-valued adaptive filters,
especially nonlinear ones. The applications of these filters
are emerging and the theory of complex-valued nonlinear
adaptive filters is following this development [5]. Our aim
is to extend the class of gradient adaptive step-size algo-
rithms to the case of complex-valued nonlinear adaptive fil-
ters. The derivation of the proposed class of variable step-
size complex-valuednonlinear gradient descent (VSCNGD)
algorithms follows the approaches from [2, 3, 4]. Notice,
however, that extensions to the nonlinear case in the com-
plex domain are non-trivial. For generality, we focus on
filters with a ‘fully’ complex nonlinear activation function
(AF)1 of a neuron, where the nonlinearity within the com-
plex AF must be analytic and bounded almost everywhere in
the complex domain, � [6]. This way, the Cauchy-Riemann 2

equations are satisfied which makes it possible to use gra-
dient descent. The analysis is supported by simulations on
colored, nonlinear and real-world signals.

1In a previously frequently used split-complex AF, the real and imag-
inary components of the input signal � are separated and fed through the
real-valued AF ����� � �� ���, � � �. A split-complex AF is therefore
given as ���� � ��������� � ����������, hence these functions are
not analytic.

2Cauchy-Riemann equations state that the partial derivatives of a func-
tion ���� � ���	 
� � ����	 
� along the real and imaginary axes should
be equal: ����� � ��

��
� � ��

��
� ��

��
� � ��

��
. This way ��

��
� ��

��
	 ��
��

�

�
��
��

.

V - 2530-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡



2. CLASS OF VARIABLE STEP-SIZE CNGD
ALGORITHMS
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Fig. 1. A complex-valued dynamical perceptron (FIR filter)

The weight update of the standard CNGD algorithm shown
for nonlinear FIR adaptive filter (Fig. 1) is expressed as [7]:

w�� � �� � w��� � �����
�
���x� ���w����

��
x���� (1)

where ���� � ���� � ��x� ���w���� denotes the instanta-
neous error at the output of the filter at the time instant �,
���� is the desired signal, x��� � ���� � ��� � � � � ��� �����

is the input signal, � is the length of the filter, ���� is the
vector transpose operator, ���� is the complex conjugate op-
erator, and w��� � ������� � � � � �� ����

� is the filter coef-
ficient vector. The parameter � is the step-size and is critical
to the convergence of the algorithms, whereas� denotes the
complex activation function.

2.1. Variable Step-Size CNGD (VSCNGD1) Algorithm

To cater for the unknown dynamics of the inputs and their
possible nonstationary nature, we propose to make the step-
size � in (1) gradient adaptive, as

���� � ��� � ��� 	��
������������ (2)

where
��� � �
������

���� � �
� ������

� is the cost function.
The gradient��
��� can be evaluated as

��
��� �
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To calculate the two partial derivatives from (3), it is neces-
sary to use the Cauchy-Riemann equations to obtain3

������

���� � ��
� �x����

�
���x� ���w����

�� �w����

���� � ��
(4)

�����

���� � ��
� �x� ������x� ���w����

�w���
���� � ��

(5)

For simplicity, we denote ��x� ���w���� � ���� and
�w���

������� � ����. Thus, from (1) we have
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(6)

3Full derivation will be omitted due to space limitation.

From (6), we now arrive at ����, which gives VSCNGD1

���� � ��� � �� �I

� ��� � �� ����� � ���
� x��� � ��x� �� � ��

� ��� � ����� � �� ������ � ���
� x��� � ��x��� � ��

�
���� � �� ����� � ���

� x��� � �� (7)

Finally we obtain the gradient update as��
��� � � �
� �����

�������
� x��������� � ����������x� �������

�
. Notice

that 	 consists of the instantaneous gradient term ��� �
�� ����� � ���� x��� � �� and a filtered version of 	 (the
term in the square brackets).

2.2. Variable Step-Size CNGD (VSCNGD2) Algorithm

The adaptive step-size in (7) is rigorously derived by ex-
tending the approach from Benveniste to the nonlinear com-
plex case. Next, for simplicity, following [4], we replace the
square bracket term in equation (7) by a constant 
 � 
 �

�. This leads to the VSCNGD2 algorithm given by

���� � 
������������� ����� � ���
� x������ (8)

For
 � �, equation (7) represents a low pass filter that takes
the weighted average of the present and past observations of
the instantaneous gradients ������ ����� � ���

� x������.

2.3. Variable Step-Size CNGD (VSCNGD3) Algorithm

When 
 � 
, (which analogous to [3]), the VSCNGD3 al-
gorithm, which is the simplest of the three proposed algo-
rithms is obtained. Table 1 summarizes the three proposed
algorithms, selection of initial parameters, and the number
of complex multiplications involved.

3. STABILITY ANALYSIS

We next employ the contraction mapping principle to illus-
trate the mean square convergence of the proposed algo-
rithms and set bounds on the values of the step-size. By the
Contraction Mapping Theorem (CMT), function � � Z �
Z is a contraction if [8]

�� ��� � � ���� � � ��� �� ��� � 	 Z (9)

where 
 � � � �. According to Banach’s fixed point the-
orem, contractive functions have at most one fixed point,
where for every � 	 Z,

������� � �������
�� � 
 as � �


. To make use of CMT, let v��� � w��� � w��	, and
subtract (1) w��	 from both side of (1), to give

v�� � �� � v��� � �������� �������
� x����

� v���� ���� �������
� x����

�
��x� ���w����

� ��x� ���w��	�
�
� �������	 ��

�����
� x���� (10)
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Table 1. Classification of VSCNGD algorithms and complexity
Algorithms Variable step-size update Parameters No. of. mul.

VSCNGD1 ���� � ��� � ��
�
I� ��� � �� ����� � ���� x��� � ��x� �� � �� ����=0.05, �=0.0002 16M

���� � ����� � �� ������ � ���� x��� � ��x��� � ��
�

���� � �� ����� � ���� x��� � ��
VSCNGD2 ���� � ���� � �� � ��� � �� ����� � ���� x��� � �� �=0.95 9M

����=0.05, �=0.0002
VSCNGD3 ���� � ��� � �� ����� � ���� ���� � �� ����=0.05, �=0.0002 8M

The activation function of a neuron used here is a complex
hyperbolic tangent, ���� � ��������

��������
. Using the condition

from (9), ��� � � ��� 	�, �
 � ��� 	�, such that [9]

����
���� ���
���� � ����
��
�� ��� �� (11)

Combining (11) and (10), we have

v�� � �� �
�
I� ���� �������

�

���
�x����x� ���
�
v��� (12)

where the inhomogeneouspart of (10) �������� �������
� x����

can be ignored in the convergence analysis. By taking the
expectation of squared ���norm in (12), we obtain

� �v�� � ����
�
� 	�������� �v�����

�
(13)

where 	������� is the maximum eigenvalue of

����� � �
�
I� ���� �������

�

���
�x����x� ���
��

. Com-
bining the condition from (13) with CMT principle (9), we
have 	������� � �� � �. Thus, the upper bound for the
step-size ���� is given as

� � ���� �



�
�� ���R�

xx��
�������������
�

�� (14)

where � is the maximum eigenvalue of the autocorrelation
matrix R�

xx.

4. SIMULATIONS

In all the experiments, the order of the nonlinear adaptive
filter was chosen to be � � �, with � � �. Simulations
were undertaken by averaging 200 iterations of independent
trials on prediction of complex-valued benchmark colored
and nonlinear signals as well as on real-life signals. The
colored signal was a complex linear ����� process given
by ���� � ���
��� � �� � ������� � 
� � ��
���� �
�� � ������� � �� � ���� with complex white Gaussian
noise (CWGN) ���� 	 
 (0,1) as the driving input. The
CWGN can be expressed as ���� � ����� � j�����. The
real and imaginary components of CWGN were mutually
statistically independent sequences having equal variances
so that ��� � ���� � ��

��
. The nonlinear input signals were

NL1 and NL2 [10], given respectively in (15) and (16)

���� �
��� � ����� � 
� ���� � �� � 
���

� � ���� � �� � ���� � 
�
������� (15)

���� �
���� � ����� � 
�

� � ���� � �� � ���� � 
� � ���� � ��

� ��� � �� � ������ � 
� (16)

To further verify the approach, we also tested the proposed
algorithms on real-world signals, including the radar and
wind signals. The measurement used to assess the perfor-

mance was the prediction gain �� � �������

�
	��
�	��

�
����

[1], where ��
 denotes the variance of the input signal ����,
and ���� denotes the estimated variance of the forward pre-
diction error ����. Figures 2a and 3a show the performance
of CNGD, VSCNGD1, VSCNGD2 and VSCNGD3 algo-
rithms on colored (�����) and nonlinear (15) inputs. Ob-
serve that VSCNGD1 has the fastest convergence compared
to the rest of the algorithms for both inputs. In a general
case, depending on the signal, VSCNGD3 exhibited similar
or slightly worst performance than the CNGD algorithm.
Figures 2b and 3b illustrate a time variation of the step-size
����. Table 2 shows the comparison of prediction gains
between the CNGD and the proposed algorithms for both
benchmark and real-life radar and wind complex signals. In
all the cases, VSCNGD1 gave best performance, followed
by VSCNGD2 and VSCNGD3.

Table 2. Prediction gain �� for CNGD and proposed algo-
rithms on various signals

R� [dB] AR(4) NL2 Wind Radar
CNGD 5.010 1.710 14.121 10.888

VSCNGD1 6.606 4.774 16.7957 14.060
VSCNGD2 6.271 4.493 16.093 15.384
VSCNGD3 4.099 1.877 14.297 13.162

5. CONCLUSIONS

The step-size in the CNGD algorithm for simple complex-
valued nonlinear neural adaptive filters has been made adap-
tive using a gradient descent based approach to give a class
of variable step-size complex-valued nonlinear gradient de-
scent (VSCNGD) algorithms. These algorithms have been
developed for a general complex nonlinear activation func-
tion of a neuron. The convergence analysis has been per-
formed and the proposed algorithms have been shown to
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Fig. 2. Performance of CNGD, VSCNGD1, VSCNGD2 and
VSCNGD3 on prediction of colored (�����) input

converge faster than the standard CNGD algorithm. Exper-
iments on both (linear and nonlinear) benchmark and real-
life complex signals support the analysis.
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