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ABSTRACT

In this paper, we investigate the intriguing relationship 

between information-theoretic learning (ITL), based on 

weighted Parzen window density estimator, and kernel-

based learning algorithms. We prove the equivalence 

between kernel independent component analysis (KERNEL

ICA) and Cauchy-Schwartz (C-S) independence measure. 

This link gives a theoretical motivation for the selection of 

the Mercer kernel, based on density estimation. 

Demonstrating this equivalence requires introducing a 

weighted kernel density estimator, a modification of 

Parzen windowing. We also discuss the role of the 

weights in the weighted Parzen windowing and KERNEL

ICA.

1. INTRODUCTION 

Kernel-based learning algorithms have been developed in 

the machine learning community during the last decades. 

With the introduction of support vector machine (SVM) 

theory [1], kernel Fisher discriminant (KFD) [2], and 

kernel principal component analysis (KPCA) [3], one is 

able to obtain nonlinear algorithms from linear ones in a 

simple and elegant way. Kernel-based algorithms are 

nonlinear versions of linear algorithms where the data has 

been nonlinearly transformed to a high dimensional 

feature space where we only need to compute the inner 

product via the kernel function. The attractiveness of 

kernel-based algorithms resides in their elegant treatment 

of nonlinear problems and efficiency for high-dimensional 

problems. Kernel methods have been successfully applied 

to time series prediction, DNA and protein analysis, 

optical pattern and object recognition [4].   

 Recently, Bach et al proposed a class of kernel-based 

algorithms for independent component analysis (ICA) that 

utilize contrast functions based on canonical correlations 

in a reproducing kernel Hilbert space, named KERNEL

ICA [5]. The KERNEL ICA is based on novel kernel-based 

measures of dependence and can be computed efficiently. 

Minimizing these criteria results in flexible and robust 

ICA algorithms. One problem with all kernel methods is 

that it is not theoretically clear how to choose the best 

kernel function. The most commonly used kernel function 

is the Gaussian kernel, but it is still an open question how 

to select the width of Gaussian kernel in general.  

 In parallel to the developments in kernel-based 

methods research, independently a research topic called 

information-theoretic learning (ITL) has emerged [6], 

where kernel-based density estimators form the essence of 

this learning paradigm. Information-theoretic learning is a 

signal processing technique that combines information 

theory and adaptive systems. ITL utilizes information 

theory as a criterion to update the structure of adaptive 

system in order to achieve a certain performance. By 

utilizing Renyi’s measure of entropy and approximations 

to the Kullback-Leibler probability density divergence, 

ITL is able to extract information beyond second-order 

statistics directly from data in a non-parametric manner. 

Information-theoretic learning has achieved excellent 

results on a number of learning scenarios, e.g. blind 

source separation [7, 8], time series prediction [9].  

 In this paper, we examine the KERNEL ICA from an 

information-theoretic learning perspective. We show that 

KERNEL ICA is equivalent to minimizing the Cauchy-

Schwartz independence measure, when estimated via 

weighted Parzen windowing, though they have different 

normalizations. Based on the discussions in this paper, we 

conjecture that the kernel-based algorithms, including the 

KERNEL ICA, which are expressed in terms of inner 

products in the kernel feature space, are in fact learning 

implicitly by using non-parametric estimates of 

probability densities in the input space. This new view 

gives a geometrical interpretation for KERNEL ICA and 

theoretical criterion for choosing the Mercer kernel used 

in the kernel-based algorithms such that it would lead to a 

relatively accurate estimate when used as the Parzen 

windowing in density estimation. Before we proceed to 

that, we first show that how the most widely used ITL 

cost functions, when estimated by Parzen windowing, can 
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be expressed in terms of inner products in a reproducing 

kernel Hilbert space.

 This paper is organized as follows. We review the 

basic theory of nonlinear kernel feature space and the 

KERNEL ICA in section 2. Cauchy-Schwartz 

independence measure is introduced in section 3. 

Afterwards, in section 4, we show how some of ITL cost 

functions can be written into quantities defined in the 

Hilbert feature space via Parzen windowing and prove the 

equivalence between the KERNEL ICA and Cauchy-

Schwartz independence measure. Furthermore, we discuss 

the role of weights, used in weighted Parzen windowing 

for probability density estimation and the corresponding 

kernel space.

2. KERNEL ICA 

Kernel-based learning algorithms use the following idea: 

via a nonlinear mapping 

→ℜΦ t: ( )xx Φ→    (1) 

the data in the input space x1, x2, …, xN
tℜ∈ is mapped to 

a potentially much higher dimensional feature space .

Instead of considering the given learning problem in input 

space tℜ , one can deal with ( ) ( ) ( )N21 ,...,, xxx ΦΦΦ  in 

feature space . When the learning algorithms can be 

expressed in terms of inner products, this nonlinear 

mapping becomes particular interesting and useful since 

one can employ the kernel trick to compute the inner 

products in the feature space via kernel functions without 

knowing the exact nonlinear mapping .Φ  This way of 

addressing the given learning problems allows one to 

obtain nonlinear algorithms from linear ones in a simple 

and elegant manner. In essence, by Mercer’s theorem 

[10], the eigen-decomposition of a positive function (the 

kernel) is utilized to define the following inner product for 

the transformation space:
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where ⋅⋅, denotes an inner product, the kϕ ’s are the 

eigen-functions of the kernel and kλ ’s are the associated 

eigenvalues. The KERNEL ICA presented by Bach et al is 

a new method to ICA based on a kernel-measure of 

independence [5]. KERNEL ICA assumes a reproducing 

kernel Hilbert space (RKHS) with kernel ),( xx ′κ  and 

feature map ( ) ),( xx ⋅=Φ κ . Then the -correlation is 

defined as the maximal correlation between the two 

random variables f1(x1) and f2(x2), where f1 and f2 range

over :
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Clearly, if the random variables x1 and x2 are independent, 

then the -correlation is zero. Moreover, the converse is 

also true provided that the set is large enough. This 

means that ρ = 0 implies x1 and x2 are independent.  

 In order to obtain a computationally tractable 

implementation of -correlation, the reproducing property

of RKHS is used to estimate the -correlation,  

( ) ( ) fxfxxf ,,),( ⋅=Φ= κ  (4) 

Let 1 and 2 be the linear spaces spanned by the Φ -

images of the data samples, then f1 and f2 can be 

decomposed into two parts, i.e. 
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where ⊥
1f and ⊥

2f are orthogonal to 1 and 2

respectively. Using the empirical data to approximate the 

population value, the -correlation can be estimated as 
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where K1 and K2 are the Gram matrices associated with 

the data sets {x1
k} and {x2

k} defined as (Ki)a,b= ),( b
i

a
i xxκ .

 In the paper [5], Bach et al used a regularized version 

for the expression (6) by penalizing the RKHS norms of f1

and f2 in the denominator because (6) is not a consistent 

estimator in general. The regularized estimator has the 

same independence characterization property of the -

correlation as (6), since it is the numerator, 2211 αα KKT ,

in the -correlation that characterizes the independence 

property of two random variables. The difference between 

the direct estimator (6) and the regularized version is only 

the normalization. This also can be seen in section 4 when 

we prove the equivalence between the KERNEL ICA and 

Cauchy-Schwartz (C-S) independence measure. 

3. CAUCHY-SCHWARTZ INDEPENDENCE 

MEASURE

In this section, we introduce the Cauchy-Schwartz (C-S) 

independence measure, which has been utilized as a cost 

function in independent component analysis (ICA) [7] and 

clustering [11].  

 In information theory, mutual information is a quantity 
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that characterizes the divergence between two random 

variables. A well-known divergence measure is the 

Kullback-Leibler distance 

= dx
xg

xf
xfgfK

)(

)(
log)(),(  (7) 

where f(x) and g(x) are two probability density functions 

(pdf). The Kullback-Leibler measure is difficult to 

evaluate in practice, without imposing simplifying 

assumptions about the data, since numerical methods are 

required to evaluate the integrals. In order to elegantly 

integrate the non-parametric pdf estimation via Parzen 

windowing [12], Principe et al proposed a new pdf 

distance measure based on Cauchy-Schwartz inequality 

between two vectors [6]. Thus we can evaluate pdf 

distance measure without making any parametric 

assumptions about the underlying pdfs.  

 Based on the Cauchy-Schwartz inequality, ≥22
yx

2)( yx
T , we can write 0log

22 ≥− yxyx
T .

Replacing the inner product between vectors by inner 

product between pdfs, we can define the Cauchy-

Schwartz independence measure as 

))()()((
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Notice that 0),( ≥gfDCS  and the equality holds if and 

only if f(x)=g(x). For two random variables X1 and X2,

with marginal pdfs f1(x1) and f2(x2) and joint pdf f1,2(x1,x2),

the Cauchy-Schwartz independence measure becomes 
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As can be seen from above that 0),( 21 ≥ffDCS . If and 

only if the two random variables are statistically 

independent, then ),( 21 ffDCS =0. Hence minimization of 

Cauchy-Schwartz independence measure leads to 

minimization of mutual information between two random 

variables. This is exactly the idea that Cauchy-Schwartz 

independence measure can be used as a criterion to 

characterize independence for ICA in [7].

 In the next section, we will proceed to prove that the 

KERNEL ICA is equivalent to Cauchy-Schwartz 

independence measure, when estimated via weighted 

Parzen windowing.  

4. EQUIVALENCE BETWEEN KERNEL ICA AND

C-S INDEPENDENCE MEASURE 

In this section, we first show how some widely used cost 

functions in information-theoretic learning can be 

estimated directly from data sample through Parzen 

windowing method. More importantly, these cost 

functions can be written in terms of inner products in a 

reproducing kernel Hilbert space, where the Mercer kernel 

is the windowing function used in Parzen density 

estimation. Then the proof of equivalence between 

KERNEL ICA and C-S independence measure will follow 

naturally.  

4.1. ITL Cost Functions in the Kernel Space

One of the most commonly used cost functions in 

information-theoretic learning is the quadratic Renyi’s 

entropy because it can be easily integrated with the Parzen 

window estimator [6], thus provides a simple way to 

estimate the entropy directly from the data samples.  

 Given the pdf f(x) for a random variable X, quadratic 

Renyi’s entropy is defined as 

)]([log)(log)( 2 xfEdxxfXH −=−=  (10) 

Since logarithm is a monotonic function, the quantity of 

interest is its argument = dxxfXV )()( 2 , which is 

called information potential. For a given pdf f(x), a non-

parametric asymptotically unbiased and consistent 

estimator is given by [12] 

=
=

N

i ixx
N

xf
1

),(
1

)(ˆ κ  (11) 

where (.)κ is called the Parzen window, or kernel. It is 

often chosen to be the Gaussian kernel though other 

kernels are also available, e.g., polynomial kernels. Then 

approximating the expectation by sample mean, we can 

estimate the information potential direct from data  

= =
−=

N
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Notice that (.)κ is a Gaussian kernel function, Hence we 

can employ (2) to rewrite (14) as  
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where Φ  is the mean vector of the transformed data. 

Thus, the quadratic information potential turns out to be 

the inner product of the mean vector of the nonlinearly 

transformed data in the Hilbert kernel space. 
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4.2. Equivalence of KERNEL ICA and C-S     

Independence Measure 

To prove the equivalence between KERNEL ICA and 

Cauchy-Schwartz independence measure, we use 

weighted Parzen windowing. For a given marginal pdf 

f(x), the weighted Parzen windowing density estimator is 

given by 

=
=

N

i ii xx
A

xf
1

),(
1

)(ˆ κα  (14) 

 When Cauchy-Schwartz independence measure (10) 

is used as a contrast function in ICA, it should be 

minimized so that the mutual information between 

random variables is also minimized. As logarithm is a 

monotonic function, minimizing the C-S quantity is 

equivalent to maximizing its argument. Approximating 

the expectation by sample mean in (10) and estimating 

pdfs with weighed Parzen windowing, we can get 
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 Comparing expressions (15) and (6), we notice that 

they have same numerators and different normalizations. 

As we already pointed out in section 2, the numerator in 

KERNEL ICA characterizes the independence measure of 

two random variables whereas the denominator gives the 

certain normalization. Hence we conclude that the Cauchy 

 -Schwartz independence measure, estimated via weighed 

Parzen windowing, is equivalent to the KERNEL ICA.

4.3. Role of the Weights 

Recently we showed that the SVM is related to ITL and 

non-parametric pdf estimation via weighted Parzen 

windowing. The weights in the Parzen windowing there is 

associated with the support vectors in SVM [13]. In the 

Cauchy-Schwartz independence measure with weighted 

Parzen windowing estimation, we notice that those 

weights are associated with the coordinates of nonlinear 

function f1 and f2 in the linear spaces 1 and 2

respectively.

6. CONCLUSIONS 

In this paper, we discuss the connection between 

information-theoretic learning (ITL), based on the 

weighted Parzen window density estimator that we have 

introduced. We demonstrated that the KERNEL ICA 

algorithm evaluates the independence between the 

separated outputs through a measure that is equivalent to 

the C-S mutual information estimated using the weighted 

Parzen windowing procedure. This discussion reveals an 

intriguing duality between the Mercer kernels and Parzen 

windowing (i.e., kernel density estimation). This duality 

provides a theoretical criterion for selecting the Mercer 

kernel in kernel-methods for machine learning and signal 

processing.  
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