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ABSTRACT

This paper presents a new algorithm for fast training of unbiased
Proximal Support Vector Machines. PSVM was first introduced
as an alternative to SVM classifiers that usually require a large
amount of computation time for training. Unfortunately PSVM
may present poor performance, especially for low values of a reg-
ularization parameter C, due to biased optimal hyperplanes. The
proposed algorithm, named UPSVM (Unbiased Proximal Support
Vector Machines), uses a slightly different approach to circumvent
this problem, such that an unbiased optimal hyperplane is always
obtained. Simulations show that the proposed algorithm performs
better than PSVM and Sequential Minimal Optimization (SMO)
with respect to training time with similar probability of correct
pattern classification.

1. INTRODUCTION

Support Vector Machines (SVM) can be used to classify an M -
dimensional pattern in one of two different classes. The classifi-
cation surface is a hyperplane on the input space (linear SVMs) or
on the feature space (non-linear SVMs) obtained after applying a
non-linear transformation to the input space. For linear classifiers,
the separating hyperplane in the input space is given by

x
T
wo + bo = 0 (1)

where w ∈ RM and b ∈ R denote weight vector and bias, re-
spectively, and x ∈ RM is a vector in the input space. An input
pattern, xi, is said to belong to class C1 if xT

i wo + bo ≥ 0, and to
belong to class C2 otherwise. For non-linear classifiers, the sepa-
rating hyperplane in the feature space is given by

g
T (x)wo + bo = 0 (2)

were g(x) is a mapping function that maps the M -dimensional
input space into the L-dimensional feature space.

In the case of linearly separable patterns the support vectors
are defined as the closest data to the optimal hyperplane, i.e., with-
out loss of generality, for a linear classifier, a support vector xS

must satisfy

x
T
Swo + bo =

j
1 if xS ∈ C1

−1 if xS ∈ C2

(3)

The distance between the hyperplanes defined by Eq. 3 is called
margin of separation. It can be easily proved that the margin of
separation is inversely proportional to the magnitude of w. When
input patterns are not linearly separable (soft margin), the support
vectors are still given by Eq. 3, but some input patterns may lay in-
side the margin of separation, or on the wrong side of the optimal

hyperplane. In this case, classification error may occur, and the
optimal hyperplane parameters are obtained by the minimization
of the training error along with the maximization of the margin of
separation. The latter can be understood as a way to obtain classifi-
cation error minimization for unknown data. This can be achieved
by solving the following linearly-constrained convex minimization
problem:

min
w,ξ

"
J(w, ξ) =

 
1

2
w

T
w +

C

p

NX
i=1

ξ
p
i

!#

subject to D(XT
w + be) ≥ e − ξ (4)

where X ∈ RM×N is a matrix of observations, xi ∈ RM is
the ith column of X, D is a diagonal matrix with class label Dii

equal to 1 if xi belongs to class C1 or −1 otherwise. ξ ∈ RN is
a vector whose ith element ξi is zero if and only if xi is bounded
by the respective support hyperplane, otherwise ξi is equal to the
distance from xi to the respective support hyperplane. Vector e
has all its elements equal to one, and p defines the classifier type.
When p = 1 the obtained classifier is called L1 large margin SVM
(L1SVM), and when p = 2 it is called L2 large margin SVM
(L2SVM). Parameter C is the regularization factor that measures
how much emphasis is given to the minimization of the training
error.

The L1SVM classifier can be obtained by the solution of the
dual-problem described below [1]:

min
α

»
J(α) =

1

2
α

T
DKDα − α

T
e

–

subject to:

j
αT De = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , N
(5)

where α is the Lagrange multiplier vector associated with the con-
straint given by Eg. 4, K ∈ RN×N is a kernel matrix whose ele-
ment Kij = K(xi,xj) = gT (xi)g(xj) for non-linear classifiers,
or Kij = K(xi,xj) = xT

i xj in the case of linear classifiers, and
N is the number of training observations. A radial-basis function
(RBF) kernel, defined below, is often used in non-linear classifiers:

Kij = exp

„
‖xi − xj‖

2

2σ2

«
(6)

where σ is a parameter defined by the user. Figure 1 shows the
use of a hyperplane for the classification of input vectors from two
non-linearly separable classes.

After training, an optimal αo is obtained. The distance from
the input vector y to the optimal hyperplane is given by

dist(y) = k
T
yDαo + bo (7)
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without error
Classification

Classification
with error

ξi

x
T
wo + bo = 1

x
T
wo + bo = −1

Fig. 1. Example for non-linearly separable classes.

where
bo = dS − k

T
xS

Dαo (8)

with dS = ±1, ky = [K(y, x1), K(y,x2), . . . , K(y,xr)]
T , xi

is an input training vector associated with a non-zero αi, and y is
a vector not used during training. If dist(y) ≥ 0 then y ∈ C1,
otherwise y ∈ C2. Eq. 7 can be used also in the case of linear
classifiers, although the classification can be further simplified:

wo = XDαo (9)

2. THE PSVM FORMULATION

PSVM was first introduced by Mangasarian and Fung [2] as a fast
training algorithm for a modified SVM problem. The PSVM asso-
ciated with DAGSVM [3] was used by Li and others in [4] for the
generalization of the PSVM classifier for more than 2 classes. The
formulation for the linear case is described below:

min
w,b,ξ

»
J(w, b, ξ) =

1

2
Cξ

T
ξ +

1

2

“
w

T
w + b

2

”–

subject to ξ = e − D
“
X

T
w + eb

”
(10)

In Eq. 10 above, the term b2 added to the objective function is an
artificial tool included to obtain an analytic solution for w, b, and
ξ based on a small system of linear equations. A similar approach
had been used before in the formulation of the Active SVM pro-
posed by Mangasarian and Musicant [5]. In section 4, we will
show that the inclusion of b2 in Eq. 10 does not improve classi-
fication performance, but rather, it will decrease the probability
of correct classification on training and test sets for small values
of C. This happens because much effort is made to minimize the
magnitudes of w and b simultaneously, which implies that b be un-
necessarily small and the optimal hyperplane be biased, i.e., closer
to the origin than necessary.

Eq. 10 also shows that the traditional SVM inequality con-
straint is replaced by an equality constraint. This drastically changes
the nature of the support hyperplanes (wT

o x + bo = ±1). These
hyperplanes are no longer bounding hyperplanes. Instead, they
correspond to “proximal hyperplanes,” around which the points of
each class are clustered. Figure 2 illustrates this approach.

Using Lagrange for solving the PSVM minimization problem
and considering α as a vector of Lagrange multipliers, the solution
for the PSVM problem can be obtained as:

αo =

„
I

C
+ HH

T

«−1

e (11)

without error
Classification

Classification
with error

x
T
wo + bo = 1

x
T
wo + bo = −1

Proximal
Hyperplanes

Fig. 2. Example for non-linearly separable classes with proximal
hyperplanes.

wo = XDαo (12)

bo = e
T
Dαo (13)

ξ =
αo

C
(14)

where H = [XT − e].
Eq. 11 was obtained after substituting wo, bo, and ξ, given

by Eqs. 12 to 14, respectively, in the equality constraint given in
Eq. 10. We can use the matrix inversion Lemma [6] to obtain:

αo = C

"
I − H

„
I

C
+ H

T
H

«−1

H
T

#
e (15)

The solution given by Eq. 15 is better than the one given by
Eq. 11 because it involves the inversion of an M × M matrix,
where M is the number of observation parameters which is much
smaller than N , the number of observations used in training.

For the non-linear case, the PSVM classifier is given by the
following equations (see [2] for the details):

αo =

„
1

C
I + GG

T

«−1

e (16)

bo = e
T
Dαo (17)

ξ =
αo

C
(18)

where G = [K − e].
The PSVM leads to an analytic solution for a modified SVM

problem . Its main advantage compared to traditional SVM prob-
lems is its low computational complexity for the linear case. For
the non-linear case, reduced-kernel techniques [2] can be used to
reduce the N × N dimensionality of the kernel matrix K. In the
next section, a new algorithm is proposed that will eliminate the
dependence of the objective function to the bias parameter b and
therefore eliminates a disadvantage of PSVM: the biased optimal
hyperplane obtained for small values of the regularization param-
eter C.

3. UNBIASED PROXIMAL SVM

3.1. Linear UPSVM

As discussed in the last section, the minimization of b2 does not
lead to improved classifier generalization or to less training errors.
Instead, it can decrease the probability of correct classification of
test data and increase the number of training errors. A new al-
gorithm is proposed that does not take into account parameter b
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in the objective function to be minimized. Using proximal hyper-
planes, the new problem for the linear case can be mathematically
formulated as

min
w,ξ

»
J(w, ξ) =

1

2
Cξ

T
ξ +

1

2
w

T
w

–

subject to ξ = e − D
“
X

T
w + eb

”
(19)

Substituting the equality constraint into the objective function in
Eq. 19, we obtain

min
w,b

»
J(w, b) =

1

2
C
“
w

T
XX

T
w + 2bw

T
Xe

+b
2
N + N − 2wT

XDe− 2be
T
De
”

+
1

2
w

T
w

–
(20)

Eq. 20 shows the dependence of the objective function to the
hyperplane parameters w and b. In order to find a solution for w
and b, the gradient of J(w, b) is calculated, which gives

∂J

∂w
= C

“
XX

T
w + bXe− XDe

”
+ w = 0 (21)

∂J

∂b
= C

“
w

T
Xe + bN − e

T
De
”

= 0 (22)

Supposing the same number of training observations for classes
C1 and C2, then eT De = 0. Solving Eqs. 21 and 22, yields

wo =

»
1

C
I + X

„
I−

1

N
ee

T

«
X

T

–−1

XDe (23)

bo = −
eT XT wo

N
(24)

An analytic solution for a Proximal SVM has been found, but
without taking into account the minimization of b. It means that
the optimal hyperplane will be unbiased even for small values of
C. The solution in Eqs. 23 and 24 also involves the inversion of an
M × M matrix, which guarantees low computational complexity
(O(N)).This complexity is much lower than that of the Sequential
Minimal Optimization (SMO) algorithm [7] used to train L1SVM.
Simulations have shown that the proposed UPSVM algorithm is
faster than SMO during training and has similar performance for
classifying test data.

3.2. Computational Complexity for the Linear UPSVM

The number of floating-point multiplications and additions can be
calculated for the linear UPSVM described by Eqs. 23 and 24 as
follows:

Table 1. Computational complexity for the linear UPSVM

OPERATION MULT. ADD.

XDe 0 M(N − 1)
XXT (T.1) M(M + 1)N/2 M(M + 1)(N − 1)/2
Xe/N M (N − 1)
Xe(Xe)T /N (T.2) M(M + 1)/2 0
I/C + (T.1) − (T.2) 1 M(M + 1)/2
Choleski [6] M3/6 M3/6
Back./Fwd. subst. [6] M2 + M + 2 M2 + M
Calculation of b NM + 1 (N − 1)(M − 1)

As can be seen the number of floating-point operations for
the linear UPSVM is approximately equal to NM2 for N much
greater than M , and its computational complexity is O(N).

3.3. Non-linear UPSVM

To obtain a non-linear UPSVM we will proceed in the same way
that traditional SVM problems were generalized [1], i.e., substitut-
ing XT X by the kernel matrix K . From Eq. 23,

wo = C

"
I − X

„
I

C
+ AX

T
X

«−1

AX
T

#
XDe (25)

where

A =

„
I−

1

N
ee

T

«
(26)

If

αo = CD

"
I −

„
I

C
+ AX

T
X

«−1

AX
T
X

#
XDe (27)

we can rewrite Eqs. 25 and 24 as

wo = XDαo (28)

and

bo = −
eT XT wo

N
= −

eT XT XDαo

N
(29)

Note that Eq. 28 has the same form of Eq. 9. Therefore αo

can be understood as a Lagrange multiplier vector, although it was
not calculated explicitly. Substituting XT X by K we obtain the
non-linear UPSVM as

αo = CD

"
I−

„
I

C
+ AK

«−1

AK

#
De (30)

bo = −
1

N
e

T
KDαo (31)

Also note that Eq. 30 involves inversion of an N × N matrix.
As was also done in [2], reduced kernel techniques can be used to
reduce computational complexity.

After obtaining αo and bo from the training procedure de-
scribed by Eqs. 30 and 31, the classification task is accomplished
by calculating the distance from the test vector y to the optimal hy-
perplane. This can be done, without knowing vector wo, by Eq. 7
using bo calculated by Eq. 31. If dist(y) is positive then y ∈ C1,
otherwise y ∈ C2.

4. EXPERIMENTAL RESULTS

UPSVM was compared with PSVM and SMO based on probabil-
ity of correct classification on a test set, variance of the optimal
hyperplane estimated parameters, and training time.

4.1. Example 1: Linearly Separable Classes

For class C1, each observation lies inside a circle with center at ori-
gin and unitary radius. For class C2, each observation lies inside
a circle with center at (2, 0) and radius equal to 0.5. In this ex-
periment, 100 classifiers were generated for each one of the three
methods being tested (SMO, PSVM, and UPSVM). For each com-
parison, we trained the three methods with the same set of 400
randomly generated observations (200 for C1 and 200 for C2).
The test set consisted of 100 subsets of 1000 randomly generated
observations (500 observations per class).

Table 2 shows the average probability of correct classification
on the test data set and the training times normalized by the small-
est value. Table 3 shows the variance of the estimated parameters
(wo, bo). Comparison is carried out for different values of C.
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Table 2. Average probability and normalized training time

C 10−4 10−3 10−2 10−1 1 10 100

SMO N/A N/A 100 100 100 100 100
24.38 17.95 24.82 16.64 18.16

PSVM 77.9 88.14 98.53 99.93 100 100 100
1.85 1.77 1.79 1.79 1.779 1.79 1.82

UPSVM 100 100 100 100 100 100 100
1.12 1.00 1.03 1.31 1.02 1.02 1.01

Table 3. Estimated parameter variance (×104)

C 10−4 10−3 10−2 10−1 1 10 100

SMO N/A N/A
2 39 268 675 675
9 60 381 1549 1550
8 175 672 1326 1370

PSVM
< 1 < 1 < 1 2 2 2 2
< 1 < 1 6 21 30 31 31
< 1 < 1 1 5 6 6 6

UPSVM
< 1 < 1 1 2 2 2 2
< 1 < 1 3 20 29 31 31
< 1 < 1 3 6 6 6 6

In table 2, probability of correct classification and training
time were not computed for SMO for low values of C (10−4 and
10−3) because it saturated, i.e., all Lagrange multipliers were equal
to C. As can be seen in table 2, UPSVM was 13 to 24 times faster
than SMO for the same value of C and still maintained the same
performance. When comparing PSVM and UPSVM it is important
to note that UPSVM was a little faster and that PSVM was not able
to classify correctly two linearly separable classes for C less than
1. This was due to an unnecessary low value of |b| that implied in
a biased optimal hyperplane.

As can be seen in table 3 the variance of the estimated pa-
rameters grows with C. Large variances means that an optimal
hyperplane obtained after only one training has a smaller proba-
bility of being close to the theoretical optimal hyperplane. This
result suggests that it is interesting to work with low values of C
whenever possible. UPSVM was the only one that achieved good
performance in this case. Furthermore, the proximal hyperplanes
were closer to their theoretical expected value than support hyper-
planes obtained by SMO. This was true especially for large values
of C, as suggested by the larger variances obtained by SMO when
compared to the variances obtained by the other two methods.

4.2. Example 2: Non-Separable Classes

Each class consists of bidimensional Gaussian stochastic processes.
Observations from class C1 have mean [0 0]T and covariance ma-
trix 0.5I. For the second class, observations have mean [2 0]T and
covariance matrix 4I. We proceeded in the same way as was done
for linearly separable classes. The probability of correct classifica-
tion for test data sets and the training times were obtained and their
mean values are shown on table 4. For each training an RBF kernel
was used with σ2 equal to 4. This experiment is equal to the one
discussed in [1] for which the probability of correct classification
is equal to 81.51.

Probability of correct classification and training time were not
computed for SMO for low values of C (10−4 to 10−2) because it

Table 4. Average probability and normalized training time

C 10−4 10−3 10−2 10−1 1 10 100

SMO N/A N/A N/A 81.29 81.10 80.65 80.58
1.00 1.40 5.21 48.67

PSVM 75.62 79.61 81.23 81.09 80.97 81.07 81.06
3.36 3.36 3.36 3.36 3.36 3.37 3.38

UPSVM 81.05 81.06 81.25 81.09 81.00 81.15 80.82
1.33 1.33 1.33 1.34 1.35 1.36 1.35

saturated. In this experiment UPSVM was not always faster than
SMO, but obtained similar performance and was approximately 4
and 38 times faster than SMO for C equal to 10 and 100 respec-
tively. For other values of C both methods obtained almost the
same training time. Another interesting result is that the training
time increases with C when training a non-linear SMO classifier,
whereas it was almost constant for the other two methods. It can
also be seen that UPSVM was more than twice faster than PSVM
in training. All three methods obtained classifiers with probabil-
ity of correct classification very close to the optimal value except
the PSVM for C equal to 10−4 and 10−3 due to biased optimal
hyperplane in the feature space.

5. CONCLUSIONS

We introduced a new unbiased proximal SVM algorithm that
showed better (in some cases much better) training times when
compared to known PSVM and SMO classifiers, while maintained
similar probability of correct pattern classification. In the simula-
tions shown, the proposed algorithm was 13 to 24 times faster than
SMO for a linear kernel and 4 to 38 times faster for a non-linear
kernel and large values of the regularization parameter C. The
UPSVM training algorithm was also faster than PSVM. When a
non-linear kernel was used, both the variance of the estimated pa-
rameters and SMO training time, increased with C, which suggests
that low values of C should be favored. However, for small values
of C, the SMO algorithm had difficulties to find the support vec-
tors, whereas the PSVM was biased. In these cases, the proposed
UPSVM algorithm is presented as a good alternative.
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