
EFFECTS OF NORMS ON LEARNING PROPERTIES OF SUPPORT VECTOR MACHINES

Kazushi Ikeda∗

Kyoto University

Graduate School of Informatics

Kyoto 606-8501 Japan

Noboru Murata

Waseda University

School of Science and Engineering

Shinjuku, Tokyo 169-8555 Japan

ABSTRACT

Support Vector Machines (SVMs) are known to have a high

generalization ability, yet a heavy computational load since

margin maximization results in a quadratic programming

problem. It is known that this maximization task results

in a pth-order programming problem if we employ the Lp

norm instead of the L2 norm. In this paper, we theoretically

show the effects of p on the learning properties of SVMs by

clarifying its geometrical meaning.

1. INTRODUCTION

In recent years, support vector machines (SVMs) have at-

tracted much attention in the field of not only machine learn-

ing [1–4] but also signal processing [5]. The idea of SVMs

consists of mapping input vectors into a high-dimensional

feature space and separating the feature vectors linearly with

the optimal hyperplane in terms of margins, i.e. distances of

given examples from a separating hyperplane.

In the original SVMs, the distances of given examples

from a separating hyperplane were evaluated in the 2-norm,

that is, the Euclidean norm. We examine in this paper what

happens if we employ the p-norm for an arbitrary 1 ≤ p ≤
∞. It is known that p affects the computational load of the

problem [6, 7]. For example, when p = 1 or p = ∞, the

problem of maximizing margins results in a linear program-

ming problem, whereas a quadratic programming problem

results when p = 2. However, it has not been clarified how

the change of norm affects the learning properties of SVMs.

An experimental result was reported in [6] in which the gen-

eralization error had very little dependency of p in computer

simulations. We give a theoretical explanation on the above

phenomena.

In this paper, we analyze the so-called linear kernels’

case, that is, consider homogeneous linear dichotomies with

an input vector x ∈ X whose corresponding output y ∈
{±1} is determined by y = sgn(w′x) where w is the pa-

rameter vector, ′ denotes the transpose and sgn(·) outputs
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the sign of ·.
In the following, we denote the nth of a given set of N

examples by (x(n), y(n)) where y(n) is made with a fixed

true parameter w∗, that is,

y(n) = sgn(w∗′x(n)), n = 1, . . . , N. (1)

2. SUPPORT VECTOR MACHINES

An SVM chooses the separating hyperplane ŵ′x = 0 max-

imizing the margin which is defined as the minimum dis-

tance between examples and the hyperplane. Since the dis-

tance between an example (x(n), y(n)) and a hyperplane

w′x = 0 is expressed as w′f(n)

‖w‖ where f (n) = y(n)x(n), w

and cw have the same distance for c > 0 due to linearity. To

absorb this ambiguity, an SVM sets the minimum distance

to unity, that is, w′f (n) ≥ 1. Maximizing the margin, then,

results in minimizing ‖w‖. Hence the problem of finding

ŵ that maximizes the margin is equivalent to the following

quadratic programming problem with linear inequalities,

min
w

1
2
‖w‖2 s.t. w′f (n) ≥ 1. (2)

It is well known that problem (2) is equivalent to

min
α

1
2
‖w‖2 −

N∑
n=1

αn (3)

where αn ≥ 0 are the Lagrangian multipliers, and

w =
N∑

n=1

αnf (n), αn ≥ 0, (4)

which is also a quadratic programming problem with linear

constraints. This is called the dual problem of (2). Note that

the SVM solution ŵ necessarily has the form of (4).
As seen above, x(n) and y(n) do not appear alone but

necessarily in the form y(n)x(n)(= f (n)). This means that

the example (x(n), y(n)) is equivalent to (f (n), 1), and in-

troducing f (n), which is also called an example, can be
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regarded as making all the examples positive. It is easily

shown that the problem of maximizing the margin is equiv-

alent to finding the most distant hyperplane from the convex

hull FN of DN = {f (n)}N
n=1 where

FN = {f |f =
N∑

n=1

tnf (n),
N∑

n=1

tn = 1, tn ≥ 0}. (5)

Although maximizing the margin is easy to understand

intuitively, it is not applicable to a linearly inseparable set

of examples, that is, there exists no parameter w such that

w′f (n) ≥ 0 for all n. To assure convergence in linearly

inseparable cases and to avoid overfitting to noisy data or

outliers in examples, soft margins were introduced in SVMs

[1]. They make the separating hyperplane less sensitive to

given examples by using slack variables ξn, ξ = 1, . . . , N ,

for margin-constraint violation and the problem is formu-

lated as

min
w,ξ

1
2
‖w‖2 + C

N∑
n=1

ξn

s.t. w′f (n) ≥ 1 − ξn, ξn ≥ 0, (6)

where C is a given constant.

3. ν-SVM WITH A DIFFERENT NORM

Let us consider a rather general problem of (6):

min
w,ξ,β

1
2
‖w‖2 + C

N∑
n=1

ξn − β

s.t. w′f (n) ≥ β − ξn, ξn ≥ 0. (7)

This is a variation of SVM called the ν-SVM [8]. This prob-

lem reduces to (6) if we fix β to unity and hence the solution

of (6) is a suboptimal solution of (7). Its dual problem is

written as

min
w

1
2
‖w‖2

s.t. w =
N∑

n=1

αnf (n), 0 ≤ αn ≤ C,
N∑

n=1

αn = 1. (8)

When C ≥ 1, the solution ŵ of (8) corresponds to

the point nearest the origin in the convex hull FN of DN .

Hence its geometrical meaning in the parameter space be-

comes clear as the original SVM with hard margins shown

in (2) can be understood intuitively in the input space. Other

formulations, such as (3) and (6), do not have clear intuitive

explanations.

When C < 1, we can consider the reduced convex hull

of DN instead of FN . See [9–11] for the meaning and char-

acteristics of reduced convex hulls. We discuss the ν-SVM

that employs the p-norm instead of 2-norm, which is defined

as

‖w‖p =

⎧⎪⎪⎨
⎪⎪⎩

(
M∑
i=1

|wi|p
)1/p

1 ≤ p < ∞

max
1≤i≤M

|wi| p = ∞
(9)

where wi denotes the ith element of w. We use the term

ν-SVM(p) to refer to it in this paper. In [6], they applied

this idea to the original SVM described as (6) for p = 1 and

p = ∞ and showed that in that case, maximizing the margin

resulted in a linear programming problem. See also [7] for

the relationship between the norm and the computational

complexity. Note that, for p ∈ (1,∞), the q-norm satisfying

1/p + 1/q = 1 (10)

is called the dual norm of the p-norm. In the case of p = 1,

the ∞-norm is the dual norm of the 1-norm and vice versa.

They satisfy Hölder’s inequality,

w′v ≤ ‖w‖p‖v‖q. (11)

The distance of an example x(n) from a hyperplane w′x =
0 in the p-norm is defined as

min
x

‖x(n) − x‖p s.t. w′x = 0. (12)

Hence the minimizer denoted by x̂ is calculated using the

Lagrangian function

L(x, λ) = ‖x(n) − x‖p
p + λw′x (13)

where λ is the Lagrangian multiplier and the distance is

written as
|w′x(n)|
‖w‖q

where q satisfies (10). Hence, the ν-

SVM(p) is formulated as

min
w,ξ,β

1
q
‖w‖q

q + C

N∑
n=1

ξn − β

s.t. w′f (n) ≥ β − ξn, ξn ≥ 0 (14)

for 1 < p < ∞. It is easily shown that the dual problem of

(14) is described as

min
v

1
p
‖v‖p

p

s.t. v =
N∑

n=1

αnf (n), 0 ≤ αn ≤ C,

N∑
n=1

αn = 1, (15)

which means that the ν-SVM(p) is a problem of finding the

point in a reduced convex hull nearest the origin in the p-

norm. The solution of (14) denoted by ŵ is given by

ŵi = sgn(v̂i)|v̂i|p−1 (16)

where v̂ denotes the solution of (15).
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4. NEAREST POINT AND ESTIMATOR

As shown in the preceding section, the estimated parameter

ŵ by ν-SVM(p) is determined through the nearest point v̂
in the p-norm. Here we discuss the geometrical relationship

between ŵ and v̂, more specifically, its dependency on the

norm. For brevity, we set C = 1 and consider only the ν-

SVM(p) with hard margins, since the case of the ν-SVM(p)

with soft margins is straightforward by considering the re-

duced convex hull.

4.1. Estimated Parameter for a Hyperplane

Let us consider the point v̂ in a hyperplane nearest the origin

in the p-norm. Without loss of generality, we assume that

the hyperplane is expressed as e′v = d(> 0) where e is

the normal vector of the hyperplane and its elements ei are

positive. Then, the problem (15) is written as

min
v

1
p
‖v‖p

p s.t. e′v = d, e ≥ 0, v ≥ 0 (17)

since all elements of the solution v̂ are positive. This is

proven using the fact that∑
i

ei|vi| ≥
∑

i

eivi = d (18)

whereas (v1, v2, . . . , vM ) and (|v1|, |v2|, . . . , |vM |) have the

same p-norm. The Lagrangian function of (17) is written as

L(v, λ) =
1
p
‖v‖p

p − λ (e′v − d) (19)

where λ is the Lagrangian multiplier, and the optimal v sat-

isfies

∂L

∂vi
= vp−1

i − λei = 0. (20)

Hence, from (16),

λ =
vp−1

i

ei
=

wi

ei
(21)

and ŵ is parallel to e. This means that ŵ and e have the

same output for any input due to linearity of dichotomy. It

is worth emphasizing that the output by ŵ does not depend

on p although v̂ varies according to p.

We show an example of M = 2 for clarity. In Fig. 1, vp

and wp denote respectively the point nearest the origin in

the p-norm and the estimated parameter induced by vp and

normalized to ‖wp‖2 = 1, that is, wp = ŵ/‖ŵ‖2 in the p-

norm. When v2 and vp lie on the same hyperplane as case

(a), w2 = wp holds from (21) and the estimated parameter

does not depend on p. However, wp is in general different

from w2 as case (b).

Convex Hull
w2=wpvp

O

Convex Hull
vp

wp

w2

O

(a) (b)

Fig. 1. Geometrical View of v̂ and ŵ.

4.2. Dependency of Estimator on the Norm

The nearest point may exist at an edge or a vertex of the

convex hull of examples. Suppose the point v̂ in an affine

space is written as the intersection of K hyperplanes

e(k)′v = d(k)(> 0), k = 1, . . . , K(≤ M), (22)

nearest the origin in the p-norm. Then ŵ is written as

ŵ =
K∑

k=1

λke(k) (23)

from (16) where λk ≥ 0 are the Lagrangian multipliers.

That is, ŵ is located in the convex cone of e(k), depending

on p.

5. ANGLES OF NEAREST POINTS AND
ESTIMATORS

To see how much w2 and wp differ in general, we consider

the cosine of the angle θ between v2 and vp,

cos θ =
v′

2vp

‖v2‖2‖vp‖2
. (24)

Then, we can prove the following theorem.

Theorem 1 For an arbitrary p ∈ (1,∞), cos θ has the
lower bound

cos θ ≥ M−| p−2
2p | (25)

where M is the dimension of the input space.

The above theorem states that the angle between the nearest

points in the L2 and Lp norms has a lower bound 1/
√

M
irrespective of N and p.

Proof Sketch Since v2 and vp are respectively the nearests

points in the convex hull in the L2 and Lp norms,

‖vp‖2 ≥ ‖v2‖2 (26)

‖v2‖p ≥ ‖vp‖p (27)

hold from the definition and

(vp − v2)′v2 ≥ 0 (28)
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holds from the convexity. Therefore, when p < 2, the de-

nominator of (24) satisfies

‖v2‖2‖vp‖2 ≤ ‖v2‖2‖vp‖p ≤ ‖v2‖2‖v2‖p (29)

from ‖ · ‖2 ≤ ‖ · ‖p and (27). Hence cos θ is bounded as

cos θ ≥ ‖v2‖2

‖v2‖p
≥ M

p−2
2p (30)

from (28) since ‖v2‖p
p has the maximum M

2−p
2 subject to

‖v2‖2 = 1.

When p > 2, in a similar way, the denominator of (24)
satisfies

‖v2‖2‖vp‖2 ≤ ‖v2‖2‖v2‖pM
p−2
2p ≤ ‖v2‖2

2M
p−2
2p (31)

since ‖vp‖2 has the maximum ‖v2‖pM
p−2
2 subject to (27)

and from ‖ · ‖p ≤ ‖ · ‖2. Hence cos θ is bounded as

cos θ ≥ M
2−p
2p . � (32)

Similarly, we can show that the cosine of the angle η
between w2 and wp has the same lower bound.

Theorem 2 For an arbitrary p ∈ (1,∞), cos η has the
lower bound

cos η =
w′

2wp

‖w2‖2‖wp‖2
≥ M−| p−2

2p | (33)

where M is the dimension of the input space.

Proof Sketch Without loss of generality, we can assume

that all the elements of vp is non-negative. From (16), we

consider the angle η between v2 and vp−1
p , which are re-

spectively parallel to w2 and wp, where

vp−1
p = ((vp)p−1

1 , (vp)
p−1
2 , . . . , (vp)p−1

p )′. (34)

Here, we use the inequality

(v2 − vp)′∇L(vp) ≥ 0 (35)

from the convexity, instead of (28), where ∇L(v) is the

gradient of L(v) =
M∑
i=1

vp
i at the point v and is parallel to

vp−1
p . The key inequality is ‖ · ‖2p−2 ≤ ‖ · ‖p when p > 2.

Using this and others, we can show

cos η =
v′

2v
p−1
p

‖v2‖2‖vp−1
p ‖2

≥ v′
pv

p−1
p

‖vp‖2‖vp−1
p ‖2

(36)

≥ ‖vp‖p

‖vp‖2
, (37)

where (37) has a lower bound M
2−p
2p . The case of p < 2 is

straightforward. �
Note that the right-hand side of (36) is equal to the co-

sine of the angle between the nearest point vp in the Lp

norm and the corresponding estimator wp. Hence it also

has the same lower bound.

6. CONCLUSIONS

In order to reduce the heavy computational load of SVMs,

the idea of employing the 1- or ∞-norms instead of the

2-norm has been proposed in the literature. However, it

was not clear how the change of norm affects the proper-

ties of SVMs. We gave a geometrical view for a gener-

alized method adopting the p-norm for measuring the dis-

tance between examples and a separating hyperplane. More

specifically, we showed the relationship of the estimator in

the p-norm to the convex hull of examples and derived the

bounds of angles of nearest points and estimators. This

becomes possible by analyzing the ν-SVM instead of the

original SVM. More rigorous analysis on the generalization

ability is future work.
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