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ABSTRACT

Support Vector machines have become important in classi-
fication, biometrics, machine learning and pattern recogni-
tion. But successful application requires selection of vari-
ous tuning parameters such as kernel parameters and penalty
or margin parameters. We apply a new technique for this
problem which provides very simple structure for the auto-
matic selector.

1. INTRODUCTION

In the last decade or so significant new methods have been
developed for pattern recognition or classification especially
within the machine learning literature. Certainly one of the
main new techniques is support vector machines (SVMs)
[1],[2],[3].

The pattern recognition problem of interest is a so-called
supervised learning problem where training data pairs

(yi, xi), i = 1, · · · , N are observed. Here yi = 0, 1 are
class labels (below we also use yi = 2yi−1 = −1, 1) and xi

are variously called predictors,covariates,features. The aim
is to construct a regression function f(x) whose associated
classifier, say sign(f(x)) minimizes a criterion such as the
misclassification error (when f(x) �= y) on future cases.

This function estimation problem based on binary de-
pendent data is an ill-condiitoned inverse problem [4] and
its solution requires that the class of functions being fitted
be constrained in some way. This is typically managed by
a penalty term which measures the size of the function in
some way and whose weighting is controlled by a penalty
parameter to be chosen by the user.

2. SUPPORT VECTOR MACHINES

It is thus satisfying to discover as shown by [5] (see also [2])
that the SVM problem [3] can be formulated as a penalised
optimization problem. We represent the function by a basis
expansion f(x) = β0 + ψ(x)T β and choose β, β0 to solve

the problem

β̂, β̂0 = min

β,β0
J(β0, β) (2.1)

J(β0, β) = ΣN
1 |1 − yifi|+ +

λ

2
‖ β ‖2

fi = f(xi)
|u|+ = u, u ≥ 0; = 0, otherwise

Here λ is a penalty parameter which controls the magnitude
of the basis coefficients. The maginitude of λ has a pro-
found effect on the results and successful implementation
requires its choice. To continue we must be more specific
about the basis expansion. The case we pursue here is where
the basis arises as an eigen-expansion of a positive definite
kernel

K(x, x
′
) = Σ∞

1 φk(x)φk(x
′
)λk

and where ψ(x) =
√

λkφk(x). Popular kernels are [2] the
Radial basis kernel:

Kσ(x, x
′
) =

1√
2πσ

e−
‖x−x

′‖2

2σ2

and the polynomial kernel:

Kd(x, x
′
) = (1+ < x, x

′
>)d

< x, x
′
> =

1
4
‖ x + x

′ ‖2 + ‖ x − x
′ ‖2

We see that each of these kernels depends on an additional
tuning parameter σ or d.

Thus to successfully solve the SVM problem we must
select values for two tuning parameters λ and σ ot λ and d.

Continuing, the penalised problem can be reformulated
[5],[2] as a problem of estimating N+1 Lagrange multipliers
αi, α0 by solving

α̂, α̂0 = min

α,α0
J(α0, α) (2.2)

J(α0, α) = ΣN
1 |1 − yifi|+ +

λ

2
αT Kα

fi = f(xi)
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f(x) = α0 + ΣN
1 αiK(x, xi)

K = [K(xi, xj)]

3. CHOICE OF TUNING PARAMETERS

Methods for choosing regularizing parameters in
ill-conditioned inverse problems are reviewed in [6] where
the approach to be applied here was developed. Methods
such as AIC [7] or MDL [8] are not obviously applicable
because they require the tuning parameter to be a model
dimension.A method such as cross-validation [7] would be
computationally demanding because it requires that the SVM
problem be solved over and over as data points are left out
one at a time. Sometimes Taylor series expansion can be
used to finesse this problem and such an approach is pursued
by [5]. The criterion developed there is not computationally
demanding but is completely different from that developed
below. The problem has also been discussed recently by
[9]. The emphasis there is on development of a steepest de-
scent procedure for optimizing a selection criterion with re-
spect to relevant tuning parameters. But the criterion being
optimized is itself computationally demanding. Bayesian
method could also be applied but in general require a huge
developmental and computational investment.

The advantage of the approach pursued here, is its easy
applicability to non-linear problems and that the selection
criteria are often computationally very simple. The tech-
nique has been successfully applied to a number of prob-
lems: threshold selection for wavelets in coloured noise
[10];penalty parameter selection for total variation denois-
ing in white noise [11] and coloured noise [12];estimation
of neighbourhood size in optical flow [13] and robust opti-
cal flow [14];selection of stopping iteration for anisotropic
diffusion [15],[16].

To apply our approach in the current setting we first
need to put the problem into a statistical setting. The tra-
ditional statistical approach to binary function estimation is
by logistic regression [2]. The model is that

pi = P (Yi = 1|xi) =
1

1 + e−fi

While logistic regression provides a binary function estima-
tor that performs very well in practice an important differ-
ence from SVM is that the SVM fit often uses only a frac-
tion of the data. Of interest to us here is the fitting proce-
dure for logistic regression. This is an iterively reweighted
least squares technique which, as with many non-linear re-
gression problems, can be interpreted as as a weighted least
squares fit to ’pseudo’ Gaussian data [2]. Given a current
estimate of the coefficients α0, α, the pseudo data is

zi = α0 + kT
i α +

yi − pi

pi(1 − pi)
, i = 1, · · · , N (3.1)

where here, ki is the ith column of K . And the next iterate
is

(α0, α)T = (XT WX)−1XT Wz

where X = K ,z = (z1, · · · , zN)T . and W = diag(wi), wi =
pi(1 − pi). Our point of departure now is (3.1) wherein we
will henceforth treat z as being Gaussian.

We emphasize that this reference to the logistic frame-
work is only for theoretical development. We do not fit the
logistic model at any stage. We rewrite the pseudo Gaussian
model as

z = µ + n

µ = 1α0 + Kα, 1 is a vector of 1s

n ∼ N(0, Ω)

Ω = W−1 = diag(
1

pi(1 − pi)
)

This is justified since y given x is a Bernoulli random vari-
able with mean p and variance p(1 − p). We use a simple
quadratic measure of reconstruction quality.

Rλ,σ = E[(µ̂ − µ)Ω̂−1(µ̂ − µ)]

where µ̂ = 1α̂0+Kα̂ and we have used variance equalizing
weighting due to (3.1). Also quantities with aˆrefer to (2.2).
The criterion partly measures the quality of the regression
function but the weighting modifies this substantially to ac-
count for the importance of classification probability.

Ideally we would choose (λ, σ) to minimize Rλ,σ . How-
ever Rλ,σ cannot be computed if only because f(x) is un-
known.

We try then to find an empirically computable, statisti-
cally unbiassed estimator of Rλ,σ , call it R̂λ,σ, and mini-
mize that instead. The unbiassedness is important since that
ensures that on average the minimizer of R̂λ,σ should be
close to the minimizer of Rλ,σ . Using only the Gaussian as-
sumption ,a simple integration by parts argument and some
differentiations involving the Euler equation for (2.1) it can
be shown from results in [6] that an empirically computable
(nearly) unbiassed estimator of Rλ,σ is

R̂λ,σ = χ2
λ,σ + mcλ,σ (3.2)

χ2
λ,σ = ΣN

1

(yi − p̂i)2

p̂i(1 − p̂i)
(3.3)

mcλ,σ =
4
λ

ΣN
1 (ŵisiK(xi, xi)) (3.4)

=
4√

2πσλ
ΣN

1 (ŵisi), for RBF

si = 1, if yifi < 1; else = 0

f̂i = α̂0 + kT
i α̂

p̂i =
1

1 + e−f̂i

ŵi = p̂i(1 − p̂i)
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We interpret mcλ,σ as a model complexity term. The idea
then is to plot R̂λ,σ for a minimum in λ, σ. We note the
extreme simplicity of the criterion. The probabilities are
obtained from the fitted SVM model while the model com-
plexity term is a simple well conditioned sum. The addi-
tional computation required once the SVM is fitted is minis-
cule. The criterion (3.2,3.3,3.4) applies to any kernel and a
similar expression applies when a finite basis expansion is
used (whose tuning parameter is then the number of basis
coefficients).

We call this selector SURE (Stein’s unbiassed risk esti-
mator for the originator, in a different context, of the inte-
gration by parts argument: see [6]).

4. RESULTS

We now develop a small simulation study to illustrate the
new method. Our simulation example is a simple example
of those typically used. The two class density functions are
each a mixture of Gaussians,

p1(x) =
1
2
N(µ1, γ

2I) +
1
2
N(−µ1, γ

2I)

p0(x) =
1
2
N(µ2, γ

2I) +
1
2
N(−µ2, γ

2I)

µ1 = (2, 2)T , µ0 = (−2, 2)T , γ2 = 1;

We simulated a sample of 100 independent samples from
each class density and used these n = 200 pairs as training
data. We solved the SVM problem with a simple steep-
est descent algorithm. As long as one uses small steps this
works well.

Fig.1 shows plots of R̂λ,σ for a range of λ, σ values.
We see a joint minimum with respect to λ, σ near λ, σ =
1.1, .7 or 1.1, .6. In practice one should investigate fits in
the vicinity of the minimum. For this reason a procedure
that only supplies a point minimum will be inadequate in
general. Also sampling fluctuations can sometimes deliver
local minima, as is evident in Fig 2. Also Fig 2 shows the
individual components of the SURE criterion as well as the
number of retained training pairs as a function of λ. We
see that about 3

4 of the data pairs are zeroed out near the
minimum.

Finally Fig 3. shows details of iterations near the minu-
mum (λ, σ) combination. We see convergence is rapid.

5. SUMMARY

In this work we have presented a new criterion for choos-
ing tuning parameters (specifically a kernel parameter and
a penalty parameter) in support vector machine classifica-
tion. The criterion requires minimal additonal computation
once a SVM model has been fitted. We have illustrated the
method by applying it to a simulated example to choose
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Fig. 3. Convergence of Steepest Descent Iteration for solv-
ing SVM problem.

both the kernel width for a radial basis function kernel and
a penalty parameter related to the classifier margin.
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