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ABSTRACT

In this paper, we consider the problem of blind source sep-
aration of 2D images under a Bayesian formulation (Bayes-
BSS). We transport the problem to the wavelet domain to be
able to define appropriate prior distributions for the wavelet
coefficients of the unobservable sources: an Independent
Gaussians Mixture (IGM) model, a Hidden Markov Tree
(HMT) model and ContextualHidden MarkovField (CHMF)
model.

Indeed, we consider a limiting case of the aforemen-
tioned prior models to propose a simple procedure for joint
source separation and denoising. This procedure shows to
be efficient, especially for highly noise observations. Sim-
ulation examples and comparisons with standard classical
methods are presented to show the performances of the pro-
posed approach.

1. INTRODUCTION

Blind source separation (BSS) finds its applications in many
fields of data processing. It consists mainly in recovering
unobservable sources from a set of their linear and instan-
taneous mixtures. It is mathematically described by:

x(t) = As(t) + ε(t), t = 1, . . . , T (1)

where A is the mixing matrix, x(t) is an m-column vec-
tor of the observed data and s(t) is an n-column vector
of the unobservable sources. ε(t) is an m-column vector
representing model uncertainties or observation noise

(
it is

assumed to be a zero mean Gaussian process i.i.d. with a
covariance matrix Rε = diag

(
σ2

1 , ..., σ2
m

))
.

Independent Component Analysis (ICA) [1] is the most
developed solution for BSS. It consists in finding, from the
model x(t) = As(t) (a noise free direct model), inde-
pendent components that may represent the original unob-
served sources. In noisy environments, ICA still identifies
the mixing process (mixing matrix) for relatively high sig-
nal to noise ratios (provided that the original unobserved
sources are independent).

In this paper we consider the Bayesian solution to the
BSS problem. Bayesian estimation for BSS has been al-
ready addressed by many authors and joint separation and
segmentation algorithms of 2D images have been derived
as in [2].

In our approach, we transport the problem to the wavelet
domain. The latter offers some natural and tractable mod-
els for a wide class of signals that can be exploited in a
Bayesian formulation. We consider three prior models for
the wavelet coefficients based on a two Gaussians mixture
distribution: i) an independentmodel across and within scales,
ii) a first order hidden Markov chain model to account for
inter scale correlations, iii) a hidden Markov field model to
account for both inter and intra scale correlations.

In order to achieve separation in the case of highly noisy
observations, a limiting case of the two Gaussians mixture
model is considered: the Bernoulli Gaussian (BG) model,
where it can be shown that the BG model is equivalent to
hard thresholding [3] in wavelet based denoising problems.

This paper is organized as follows: In section 2 we in-
troduce the BSS in the wavelet domain and write the corre-
sponding posteriors of the parameters of interest (the mixing
matrix, the noise covariance matrix and the wavelet coeffi-
cients of the unobservable sources). We will then describe
in details the priors of each one of these parameters in order
to write this posterior. A simple and efficient procedure is
presented in section 3 to perform source separation in high
noisy data. A simulation example and comparisons with an
ICA method[4] is presented in section 4 and we conclude in
section 5.

2. WAVELET BASED BAYES-BSS

Because of the linearity of the wavelet transform, the BSS
model (1) is equivalently written in the wavelet domain:

wλ
x = Awλ

s + wλ
ε , λ = (j, kj) (2)

where wλ
x is a m-column vector of the k th

j wavelet coeffi-
cients of the observations x(t) at resolution j (similarly for
wλ

s and wλ
ε ). j = 1, . . . , J and kj = 1, . . . , 2−jT . The
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double index λ means that the BSS problem is described in
each wavelet subband[5] separately (having in common the
same mixing matrix A).

In Bayesian estimation, we need to explicit the posterior
of the parameters of interest: the unobservable sources, the
mixing matrix, the noise covariance matrix and the param-
eters describing the prior models (commonly called hyper-
parameters). It is given by:

p(Ws, A, Rε, θs|Wx) ∝ p(Wx|Ws, A, Rε) × ...

... × π(Ws|θs)π(A|θA)π(Rε|θε)π(θs) , (3)

where Wx =
⋃

λ{wλ
x} and Ws =

⋃
λ{wλ

s }. In equation
(3) we assume that Ws, A and Rε are a priori independent.
The hyperparameters (θA, θε) defining respectively the pri-
ors of A and Rε are fixed once for all, reducing the number
of unknown variables. Only θs defining the prior for the
wavelet coefficients of the sources will be inferred.

2.1. Mixing matrix prior distribution: π(A|θA)

The prior distribution of A can be given by a description of
the physical mixing process. In this paper, and without loss
of generality, we consider the elements of the mixing matrix
(aij) to be Gaussian independent N (µa

ij , σ
2
a).

2.2. Noise variance prior distribution: π
(
σ2

i |θε

)
The noise variances σ2

i are assigned an InverseGamma prior
[2] distribution of the form:

π
(
σ2

i |α0, ν0

) ∝ 1

σ
2(α0+1)
i

exp
(
− 1

ν0σ2
i

)
��+ . (4)

2.3. Prior distribution of Ws

We will first assume that the sources are a priori mutually
independent, thus their wavelet coefficients and write:

π(Ws|θs) =
n∏

i=1

π(Wsi |θsi) , (5)

where Wsi =
⋃

λ{wλ
si
} represents the wavelet coefficients

of the source Si = {si(1), . . . , si(T )}. Several properties[6]
of the wavelet coefficients motivate the choice of an appro-
priate prior π(Wsi |θsi):

P1. Compression: the wavelet transform is a sparse
representation of a wide class of signals.
Property P1 states that, for a large class of signals, the wavelet
transform results in a large number of small coefficients and
a small number of large coefficients. It is statistically de-
scribed by peaky and heavy tailed distributions.

One such family of distributions, considered in [5, 7],
are the generalized p-Gaussian distributions (gpG). This kind

of priors allowed to establish connections between wavelet
thresholding and Bayesian MAP estimation[7]. However,
such distributions are non conjugate priors presenting opti-
mization difficulties.

Another family of priors that captures efficiently the sparse-
ness property is a two Gaussians mixture [6] of the form:

π
(
wλ

si

)
= p

(i)
L N (wλ

si
|0, τ

(i)
L ) + p

(i)
H N (wλ

si
|0, τ

(i)
H ), (6)

with τL << τH and pL = 1 − pH . pL/H = Prob
(
wav.

coeff. ∈ low/high energy state
)
. This prior model classifies

the wavelet coefficients into two classes: low energy coeffi-
cients and high energy coefficients.

In order to go further in the description of the prior
model, we introduce binary hidden random variables asso-
ciated to the wavelet coefficients of the sources in order to
rewrite the distribution (6) under the form:

π
(
wλ

si
|zλ

i = q, τ (i)
q

)
= N (wλ

si
|0, τ (i)

q ), (7)

where q ∈ {L, H} and π
(
zλ

i = q
)

= pq. We will now detail
three different possible models for these hidden variables.

2.3.1. Independent Gaussian Mixture model (IGM)

A simple model for the wavelet coefficients is an indepen-
dent model across and within scales:

π(Zi) =
∏
λ

π
(
zλ

i

)
, (8a)

π(Wsi |Zi) =
∏
λ

π
(
wλ

si
|zλ

i = q, τ (i)
q

)
. (8b)

where Zi =
⋃

λ{zλ
i } and Wsi =

⋃
λ{wλ

si
}. The IGM

model is a simple model but lacking local homogeneity. In
order to enhance this model, additional properties[6] of the
wavelet coefficients are considered. To go further in the de-
scription of the next two models, notations have to be fixed
in conjunction with Fig. 1:
. Pλ represents a parent (ascendent) node of the node λ,
while Cλ represents its set of child nodes (descendents).
. νλ is a set of neighboring nodes of λ (in this paper we
consider only first order neighboring systems).

Fig. 1 concerns the dyadic wavelet transform of 1D sig-
nals, its generalization to 2D images is straightforward.

2.3.2. Hidden Markov Tree model (HMT)[6]

The wavelet coefficients have been described to be persis-
tent, which means they tend to propagate across scales. This
suggests to account for inter scale correlations between the
hidden variables (Zi) through a first order Markov chain:

p
(
zλ

i = q
)

=
∑
q′

p
(
zPλ

i = q′
)

p
(
zλ

i = q|zPλ

i

)
, (9)

with {q, q′} ∈ {L, H}.
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Fig. 1. Quad tree representation of the wavelet coefficients
for a 1D signal dyadic wavelet decomposition: • Wavelet
coefficients ◦ Associated hidden variables.

2.3.3. Contextual Hidden Markov Field model (CHMF)

An additional property enhances a step more the HMT model
accounting for intra scale correlations:

P3. Clustering: the wavelet coefficients tend to be lo-
cally correlated.
We propose to statistically model this property by a Markov
random field on the hidden variables:

π
(
zλ

i = q
) ∝ exp

(
β1

∑
r∈νλ

δzr
i
(q)+β2

∑
r∈Cλ

δzr
i
(q)

)
, (10)

where β1 and β2 are heuristically determined constants.

3. JOINT SOURCE SEPARATION AND
DENOISING

In the case of highly noisy observations, and in order to
be able to separate the sources, additional information is
considered: a wide class of signals can be well approxi-
mated by only a few number of their wavelet coefficients.
In wavelet based denoising, connections between hard/soft
wavelet thresholding and Bayesian estimation have been es-
tablished in [3, 7], especially for the gpG and the Bernoulli-
Gaussian (BG) prior model. The BG model is given by:

π
(
wλ

si

)
= p

(i)
L δ(0) + (1 − p

(i)
L )N (wλ

si
|0, τ

(i)
H ). (11)

It is in fact a limiting case of the two Gaussians mixture
model of equation (6). We can easily prove the following:

lemma 1 The Maximum A Posteriori (MAP) estimate ŵλ
s

of wλ
s in a denoising problem: wλ

x = wλ
s + wλ

ε , with wλ
ε ∼

N (0, σ2), where the prior distribution of wλ
s is given by

equation (6), is:

ŵλ
s =

⎧⎨
⎩

τ̂L

σ2 wλ
x , if zλ = L,

τ̂H

σ2 wλ
x , if zλ = H.

(12)

where 1/τ̂q = 1/σ2 + 1/τq. If (τL → 0), the prior tends to
(11) and the MAP estimate is given by:

ŵλ
s =

⎧⎨
⎩

0, if zλ = L,

τ̂H

σ2 wλ
x , if zλ = H.

(13)

defining a hard thresholding on wλ
x . �

The BG prior model of equation (11) is then adopted for the
wavelet coefficients, in the case of highly noisy observa-
tions in order to implement a joint separation and denoising
procedure. The three prior models for the hidden variables
described earlier are similarly adopted in that case.

4. SIMULATIONS RESULTS

An MCMC stochastic based algorithm have been imple-
mented for the optimization purpose with adapted sampling
procedures for each prior model. Simulations have been
made on aerial gray scale images of Fig. 2-a. The mixing
matrix A = [[1, .9], [.5, 1]] and the noise free observations
are shown on Fig. 2-b.

a. b.

Fig. 2. a. 128 × 128 original source images, b. Noise free
mixed images with A =

[
[1, .9], [.5, .1]

]
.

For this data set, we have used the “Symmlet” wavelets
with 6 vanishing moments, these wavelets are highly sym-
metrical. The 128 × 128 observation images of Fig. 2-b
have been decomposed up to the 3 rd wavelet scale.

In Fig. 3, the evolution of a normalized L1 norm er-
ror δs(i) = 10 log10(‖ŝi − si‖1/‖si‖1) in terms of the sig-
nal to noise ratio SNRdB = 20 log10(‖[As]i‖2/σ) is pre-
sented for the three different prior models (IGM, HMT and
CHMF). For comparison, Fig. 3 shows also the results with
a classical ICA method (JADE[4]).

We see from Fig. 3 that the proposed approach outper-
forms the classical ICA method, at least for this data set.
Accounting for inter scale correlations with the HMT model
doest not improve the results for the aerial image of Fig. 2-
a (top), this is mainly due to its white behaviour on many
portion of the image, however, accouting for intra and inter
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Fig. 3. ∆s vs. SNR for source 1 (top), source 2 (bottom)
obtained with: ICA (continuous line), IGM model (dotted-
dashed line), HMT model (dashed line) and CHMF model
with β1 = .6, β2 = .7 (dotted line).

scale correlations through the CHMF model improves the
resulting estimates for both the aerial and the cloud image.

At low SNR’s (� 12dB), the outlined method, with the
standard two Gaussians mixture model of equation (6), does
not manage to perform any separation. In that context, the
Bernoulli Gaussian prior of equation (11) has been consid-
ered to jointly separate and denoise. On Fig.4, we show the
resulting estimates for a SNR ≈ 10dB with the three prior
models (IGM, HMT and CHMF).

Fig. 4. The obtained separated sources for SNR≈ 10dB
with the IGM model (left), HMT model (middel) and
CHMF model with β1 = .6, β2 = .7 (right).

What we notice, is that the HMT model does not achieve
a good separation at such low SNR’s for images having
a frequency content similar to that of the cloud image of
Fig. 2-a (top). However, for the cloud image of Fig. 2-a
(bottom), both the HMT and CHMF presents better recon-

structed images than that obtained with the IGM model, in
the sense that they are less smoothed and contours are well
preserved.

5. SUMMARY AND CONCLUSION

In this work, we addressed the problem of blind source sep-
aration in the wavelet domain under a Bayesian formula-
tion. We considered three prior models for the wavelet co-
efficients:
. the Independent two Gaussians mixture model (IGM),
. the hidden Markov tree model (HMT),
. the contextual hidden Markov field model (CHMF).

Simulations have been performed and compared to a
classical ICA method, where we see from Fig. 3 that the
presented approach outperforms the ICA approach.

A second prior model (the Bernoulli Gaussian model)
has been proposed to perform efficient joint source separa-
tion and denoising whenever the noise is highly present in
the data, this method seems to be a promising approach es-
pecially for the Contextual Hidden Markov Filed (CHMF)
model.
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