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ABSTRACT

In this paper we present an extension to Monte Carlo Local-
isation (MCL) to solve the global localisation problem. This
extension is in the form of an efficient data-dependent pro-

posal that can be used both for initialisation and re-initialisation

after tracking failure or robot kidnapping. The proposal is
a Gaussian mixture over a fixed grid of locations, each of
which has a sensor structure similar to that of the robot. The
robot measurements are matched to these structures to give
the best-match orientation for each grid point. The mix-
ture components are then centred on the grid locations and
best-match orientations, with the component weights pro-
portional to the best-match likelihoods. Empirical results
illustrate that our MCL approach is more computationally
efficient than standard MCL, and demonstrates faster recov-
ery from localisation failures.

1. INTRODUCTION

Mobile robot localisation involves the estimation of the pose
(position and orientation) of a robot based on its sensor mea-
surements and a map of the environment. There are two
main problems under mobile robot localisation: position
tracking and global localisation. In position tracking, the
initial state of the robot is known and the problem is to keep
track of the robot over time and compensate for incremental
errors in the robot state. Global localisation is more chal-
lenging as it addresses the problem when the initial state
of the robot is unknown. This encompasses the kidnapped
robot problem [1], where a well-localised robot is moved to
some other location without notification.

Probabilistic approaches have been recognised to be one
of the best strategies to provide efficient and real-time so-
lutions for the robot localisation problem. Recently, the
most popular of these has been Monte Carlo Localisation
(MCL) [2, 3], which is an application of Sequential Monte
Carlo (SMC) methods [6, 7]in the context of mobile robot
localisation. It represents the distribution of the robot state
with a weighted set of samples that is recursively updated
as more measurements arrive. Its popularity stems the fact
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that it is able to deal with non-linearities, and represent non-
Gaussian and multi-modal distributions.

A naive extension to MCL to deal with global localisa-
tion involves adding a small proportion of uniform samples
during tracking [2]. However, since the samples are gener-
ated without knowledge of the data this approach tends to be
very inefficient. Recently, a more efficient method, mixture-
MCL, was proposed [4]. In addition to the standard MCL
sampling process, mixture-MCL guesses poses based on the
most recent sensor measurements. A kd-tree is learned to al-
low fast sampling from the proposal distribution. The main
disadvantage of mixture-MCL is the computational expense
required to build and update the tree. Other approaches in-
clude adapting the sample size during localisation [2, 5].

In this paper we propose an extension to MCL that solves
the global localisation problem. Our approach is to con-
struct an efficient data-based proposal that can be used for
both initialisation and re-initialisation. We do so by con-
structing a grid over the environment, where each grid point
has a sensor structure similar to that of the robot. We then
match the robot measurements to the grid points, and deter-
mine, for each grid point, the orientation of the best match
and the corresponding likelihood. This matching can be
done very efficiently, since the expected measurements for
each grid point need only be computed once. Grid points
close to the true robot pose will tend to have a relatively
large associated likelihood for the best match. Using this
principle, we define the grid-based proposal as a Gaussian
mixture over the grid points, with one component for each
grid point. The component is centred on the grid point loca-
tion and best-match orientation, with its weight proportional
to the best-match likelihood. Typically, only a small number
of components will contribute to the bulk of the probability
mass, and only these are included in the final mixture.

For initialisation we sample from this grid-based pro-
posal to generate the initial sample set. Since this approach
uses the information in the measurements, far fewer sam-
ples are required compared to schemes that initialise uni-
formly. During tracking we combine the grid-based pro-
posal with the robot dynamics in a mixture fashion to act
as the proposal for new robot poses. We dynamically ad-
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just the weighting of this mixture to reflect our confidence
in the estimation accuracy. If the robot is confident in its
pose estimate the weight for the grid-based component is
low and samples are mostly generated from the dynamic
model. If, in contrast, the confidence in the pose estimate
is low, the weighting is increased, and more samples are
generated from the grid-based proposal. The use of an ef-
ficient data-based proposal and an online adaptive scheme
for the weighting means that far fewer samples are required
to achieve the same estimation accuracy as naive extensions
to MCL.

The remainder of the paper is organised as follows. In
Section 2 we describe the models for the robot and its range-
finding sensors. Section 3 describes the MCL framework.
We derive our grid-based proposal in Section 4, and illus-
trate its performance in Section 5. Finally, we conclude with
a summary in Section 6.

2. ROBOT MODEL

We consider a generic mobile robot, equipped with range-
finding sensors placed evenly on the robot. We will denote
the robot state at time ¢t by x; = (¢, Y, 0¢), with (¢, y¢)
the robot location, and 6, its orientation. We will denote the
model for the robot dynamics by pg(x;|x;—1, ut), where u;
is the control command. This model encapsulates the robot
kinematics and any uncertainty in the modelling and state
evolution. To accommodate the fact that the robot may be
moved, or that track may be lost so that re-initialisation is
necessary, we augment the dynamics with a uniform com-
ponent, i.e.

P(x¢|xe—1,ut) = (1 — a)pa(xe|xe—1,u¢) + aU(x¢), (1)

where U (x;) is the uniform distribution over the environ-
ment, and 0 < o < 1 is its weight in the dynamics.

The robot sensors are short range range-finding sensors.
They have a maximum range of 300 cm, a diffraction angle
of 20°, and a noise level of 5%. Each sensor measures the
distance to the closest obstacle within the detection range.
We will denote the range measurement for the j-th sensor at
time ¢ by r; ;, and denote by y; the collection of all the range
measurements. For the observation likelihood p(y;|x:) we
adopt a model similar to the one in [1], i.e.

p(yelxe) = [ plrj.elx0)- 2
j

Thus, the sensors measurements are assumed to be inde-
pendent conditional on the robot pose. For each sensor
the observation model can be expressed as p(r;:|x;) =
p(rje|7jx,), where 1, is the expected range given the
robot pose and environment map. This model is a mixture
of three components: a Gaussian component centred at the

expected range that models the event of detecting a known
obstacle, an exponential component that models maximum-
range measurements and the event that a sensor fails to de-
tect an obstacle, and a uniform component that models un-
expected readings caused by unknown obstacles.

3. MCL LOCALISATION

The objective of robot localisation is to estimate the pos-
terior distribution of the robot state given all the available
measurements p(x¢|yi1.t), also known as the belief state.
Using Bayes’ rule this distribution can be recursively up-
dated according to

P(Xe|y1:e) o< p(ye|xe) /p(xt|xt717ut)p(xtfl‘}’l:tfl)dxtfl-

(3)
The recursion is initialised with the initial state distribution
Po(Xo), which is normally assumed to be uniform.

The recursion in (3) does not lead to closed-form expres-
sions for the models of interest in robot localisation, and
approximate numerical techniques are required. Of these
MCL have proved to be the most successful, since it its able
to deal with non-linearities, non-Gaussianities and multi-
modality. It represents the belief state by a weighted set

of samples that is recursively updated as new measurements

arrive. If the sample set {wgz)l, x,(:l)l N | approximates the

belief state at the previous time step, MCL generates new
samples for the current time step by simulating from a suit-
ably defined proposal distribution, i.e.

Xgn) ~ Q(Xt ‘Xgﬁ)lv U, yt)v (4)

and then updating the importance weights to

Pyl p ™ ™ )
Q(Xgn) |X§7i)17 Ut, Yt)

w™ oc w™ )

)
1
The sample set {w\™,x{"}¥ | is then a valid approxima-
tion of the new belief state. Resampling needs to be per-
formed from time to time to avoid degeneracy of the sample-
based representation. For a full discussion of these issues,
see e.g. [6, 7].

The success of MCL hinges on the design of the pro-
posal distribution. Standard MCL sets the proposal equal to
the robot dynamics, so that the new weights becomes pro-
portional to the sample likelihoods. This takes no account of
the new measurements, and leads to tracking failure when
the robot is kidnapped. Mixture-MCL alleviates this prob-
lem by defining the proposal as a mixture of the dynamics
and a component that is an approximation to the inverted
likelihood. The approximation is based on a kd-tree that
is learned from the measurements. In the next section we
present an alternative data-based proposal that requires no
learning.
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4. AN EFFICIENT GRID-BASED PROPOSAL

Similar to mixture-MCL, we define the proposal as a mix-
ture of the robot dynamics and a data-dependent compo-
nent, i.e.

a(xe|xe—1,u, y1) = (1 — @)p(xe[xe—1, ue) + da(xelye),

(6)
where the mixture coefficient 0 < ¢ < 1 is allowed to vary
with time. Our aim is to design the data-dependent com-
ponent so that it is an efficient and reasonably accurate ap-
proximation of p(x;|y:) o p(y:|x:)po(x¢). We do so by
constructing a grid over the environment, where each grid
point has a sensor structure similar to that of the robot. We
adopted a regular grid, with the grid point separation deter-
mined by Monte Carlo tests to compute the error statistics
as a function of separation. During tracking we match the
measurements y, to the grid points, and determine, for each
grid point, the orientation of the best match and the cor-
responding likelihood. Grid points close to the true robot
pose will tend to have a relatively large associated likeli-
hood for the best match. Using this principle, we define the
data-dependent proposal as a Gaussian mixture over the grid
points, with one component for each grid point, i.e.

G
q(xelyr) =Y BiN(xe|;, A), (7
i=1

where G is the number of grid points. The component for

the i-th grid point is centred on the grid point location (2§, y)

and the best-match orientation 6, so that the mean is given
by p; = (2§,y%,0F). The isotropic covariance A is the
same for all grid points, and is set proportional to the dis-
tance between the grid points. Finally, the mixture weight
is set proportional to the best-match likelihood, i.e. [3;
p(ytlp;). Typically, only a small number of components
will contribute to the bulk of the probability mass, and in
practice only these are included in the final mixture.

The proposal in (6) is useful for both initialisation and
re-initialisation after tracking failure or robot kidnapping.
For initialisation we set ¢ = 1, i.e. samples are gener-
ated only from the data-dependent component. Since con-
stant re-initialisation may prove to be detrimental to perfor-
mance, as well as computationally expensive, we want to
perform it only when the confidence in the robot pose es-
timate is low. We achieve this by monitoring the moving
average of the maximum likelihood over the samples, and
allow re-initialisation only if this quantity falls below a pre-
determined threshold. The weight for the re-initialisation
component is then set to be proportional to the extent by
which this quantity falls below the threshold.

Since we allow frequent re-initialisation the samples at
any time may not be from a single mode. Thus, care has
to be taken when computing estimates of the robot pose,

such as the weighted sample average. Subsequent to initial-
isation we do not compute pose estimates until the samples
collapse to a single cluster, i.e. the diagonal of the rectan-
gle that encloses all the samples is smaller than a threshold.
Upon re-initialisation, the newly generated samples may not
be consistent with the original cluster set, thus showing a
multi-modal distribution. Therefore, these samples are not
used in pose estimation, but only those from the robot dy-
namics component of the proposal. The samples that orig-
inated from re-initialisation are not used in pose estimation
until all the samples have again collapsed to a single cluster.

5. EXPERIMENTAL RESULTS

Our proposed MCL with re-initialisation algorithm is evalu-
ated in the context of indoor mobile robot localisation using
Matlab simulations. For this purpose robot trajectory data
along with sensor measurements have been generated from
the model described in Section 2.

5.1. Global Localisation

In this experiment the global localisation and tracking abili-
ties of our MCL algorithm is evaluated and compared against
standard MCL. Figure 1 (right) shows the simulation en-
vironment with the paths we will use to assess the perfor-
mance.

)

Fig. 1. Paths for global localisation (left) and an example of
kidnapping (right).

Figure 2 shows the performance results for standard MCL
and MCL with re-initialisation as a function of sample size.
The results were obtained by averaging over 100 runs for
each of the paths in Figure 1, each with different simulated
sensor measurements. The loss rate is defined as the per-
centage of time during which the algorithm has lost track,
i.e. when the estimated robot location deviates by more than
50 cm from the true location. The position estimation error
is only computed during periods of tracking. Including esti-
mation errors during periods of track loss tends to overstate
the error and does not reflect the tracking ability of the al-
gorithm.

MCL with re-initialisation achieves consistently low es-
timation errors and loss rates that are virtually independent
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Fig. 2. Loss rate (left) and position estimation error (right)
as a function of sample size for standard MCL (blue dia-
monds) and MCL with re-initialisation (red circles).

of the sample size. For sample sizes as low as 100 the loss
rate is as much as 60% smaller than that for standard MCL.
This is due to the efficiency of the data-dependent proposal.
For very large sample sizes MCL with re-initialisation is
outperformed by standard MCL. This is consistent with the
result in [4], where experiments have shown that the optimal
sample size is between 1000 and 5000.

5.2. Kidnapped Robot Problem

Figure 3 shows results for the kidnapped robot problem sim-
ilar to those for global localisation in Figure 2. These results
demonstrate the superiority of MCL with re-initialisation to
standard MCL and MCL with added random samples [2].
The trajectories in this case each included one kidnapping
event. One such example is given on the right in Figure 1.
As illustrated in Figure 4, the algorithm is able to detect the
kidnapping event, and the data-dependent proposal success-
fully re-initialises the samples on the new robot location.
This result is achieved with only 100 samples.
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Fig. 3. Loss rate (left) and position estimation error (right)
as a function of sample size for standard MCL (blue dia-
monds), MCL with added random samples (green circles)
and MCL with re-initialisation (red dots).

6. CONCLUSIONS

We have presented an efficient extension to MCL to solve

the global localisation problem. Samples for (re)-initialisation

are generated from a data-dependent grid-based proposal
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Fig. 4. True (solid red) and estimated (dashed blue) robot
pose (left) and location and orientation error (right) as a

function of time for the kidnapped robot example in Figure
L.

that requires only information about the sensor structure
of the robot. Experimental results show that our approach
can increase both localisation accuracy and efficiency when
compared to standard MCL. Moreover, our method demon-
strates a significantly faster recovery from robot kidnapping
compared to MCL with added random samples. These re-
sults were achieved with relatively small sample sizes, illus-
trating the efficiency and robustness of the data-dependent
proposal.
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