
A FAST IMPORTANCE SAMPLING ALGORITHM FOR UNSUPERVISED LEARNING OF
OVER-COMPLETE DICTIONARIES

T. Blumensath, M. Davies

Queen Mary, University of London
Department of Electronic Engineering
Mile End Road, London E1 4NS, UK

ABSTRACT

We use Bayesian statistics to study the dictionary learning prob-
lem in which an over-complete generative signal model has to be
adapted for optimally sparse signal representations. With such a
formulation we develop a stochastic gradient learning algorithm
based on Importance Sampling techniques to minimise the neg-
ative marginal log-likelihood. As this likelihood is not available
analytically, approximations have to be utilised. The Importance
Sampling Monte Carlo marginalisation proposed here improves on
previous methods and addresses three main issues: 1) bias of the
gradient estimate; 2) multi-modality of the distribution to be ap-
proximated; and 3) computational efficiency. Experimental results
show the advantages of the new method when compared to previ-
ous techniques. The gained efficiency allows the treatment of large
scale problems in a statistically sound framework as demonstrated
here by the extraction of individual piano notes from a polyphonic
piano recording.

1. INTRODUCTION

Finding sparse over-complete signal representations has recently
attracted increased attention [1]. Not only does such a represen-
tation offer an efficient description of the signal [2], it might also
make present structure and patterns more apparent [3]. However,
previous algorithms solving this problem had three main short-
comings. From a Bayesian point of view a statistical formula-
tion of the problem requires marginalisation over nuisance param-
eters for which no analytical solution is available. This problem
was previously addressed by the use of approximations of this in-
tegral around a MAP estimate [4, 2, 5]. However, the resulting
approximation of the gradient is not guaranteed to be unbiased.
Furthermore, for multi-modal distributions, the MAP estimate can
generally not be found as the optimisation algorithms used only
converge to local maxima, which might lead to poor approxima-
tions. Most importantly, the iterative methods used to find such
local maxima are computationally intensive.

This paper addresses these problems by Importance Sampling
Monte Carlo approximations of the required integrals. Importance
Sampling estimates are unbiased and are not influenced by the
number of modes of the distribution to be sampled. Computational
efficiency is achieved by utilising 1) a data dependent proposal dis-
tribution which can be sampled efficiently; and 2) by using fast
methods to calculate the sample weights.

Part of this work was conducted at LabROSA, Columbia University,
New York.

2. THEORY

As in [6] we assume a generative model of the form:

xj = Asj + ε (1)

where xj ∈ R
M is the jth observation, sj ∈ R

N is an unknown,
efficient, alternative representation of the data, A ∈ R

M×N is
the dictionary to be learned, ε ∈ R

M is a vector of observation
noise assumed here to be i.i.d. Gaussian and N > M . The data
likelihood is then:

p(xj |A, sj) ∼ N (Asj , λ
−1
ε I). (2)

In order to enforce sparsity of the coefficients sj (and therefore
efficiency of the representation) we impose the following mixture
prior as in [6].

p(s|u) =
Y
n

p(sn|un) =
Y
n

un

r
λp

2π
e−

λp
2 s2

n +(1−un)δ0(sn)

(3)
where un is a binary indicator variable with discrete distribution:

p(un) =
1

1 + e−
λu
2

e−
λu
2 un (4)

and δ0(sn) is the Dirac mass at zero. This prior is a mixture of a
Gaussian distribution and the Dirac mass, therefore forcing many
of the coefficients to be exactly zero with the hyper-prior regulat-
ing the sparsity of the distribution.

The parameters defining this model are θ = {A, λp, λu, λε}1.
Instead of adopting a fully Bayesian approach to the estimation
of these parameters, i.e. instead of specifying prior distributions
and calculating their joint posterior distribution or the maximum
thereof, we can either assume parameters to be known, or learn
them using a stochastic gradient descent algorithm to find the max-
imum likelihood estimate. The coefficients s and u are not of
direct interest during model learning and should therefore be in-
tegrated out of the data likelihood. The maximum likelihood esti-
mate is then

θ̂ = arg max
θ

Y
j

Z
p(xj , sj ,uj |θ) d{sj ,uj}. (5)

This maximisation can be solved using a stochastic gradient op-
timisation by approximating the gradient with respect to all data

1The model described here has a scale ambiguity. To overcome this we
either fix λp or re-normalise the dictionary elements after each update.

V - 2130-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

with the gradient with respect to a single data point xj . A textbook
result for the gradient of the logarithm of a marginalised likelihood
with respect to a single data point is

∂

∂θ
log p(x|θ) =

Z
p(s,u|x, θ)

∂

∂θ
log p(x, s,u|θ) ds du, (6)

where from now on we drop the index j. This expectation cannot
be evaluated analytically in general and different approximations
have been proposed in the literature [1, 2, 4], all of which require
the calculation of the MAP estimate of p(s,u|x, θ). However, for
many prior distributions the posterior over the coefficients is multi-
modal and such estimates then only reflect a section of the distri-
bution and might fail to account for most of the probability mass.
Furthermore, such estimates are generally biased, so that conver-
gence to the true maximum of the likelihood is not guaranteed.

Stochastic gradient learning of the parameters randomly iter-
ates through the available data, updating the parameters by a small
amount in each iteration. This method therefore averages the gra-
dient over several steps. This suggests the use of a less accurate
approximation of the gradient in equation 6 which itself is already
a rather poor approximation of the true gradient with respect to
all available data. The stochastic gradient algorithm is then still
able to converge to a maximum, given the unbiasedness of the ap-
proximation is ensured and the learning rate is decreased to zero
[7].

We propose a Monte Carlo approximation of the above inte-
gral using Importance Sampling [8]. This technique does not rely
on MAP estimation and can therefore be implemented efficiently
as shown below.

Importance Sampling approximates an integral by a sum of
weighted samples.

Z
p(s,u|x, θ)

∂

∂θ
log p(x, s,u|θ) ≈

IX
i

wi
∂

∂θ
p(x, ŝi, ûi|θ)

(7)
where ŝi and ûi are samples drawn from a proposal distribution
q(s,u) with the same support as p(s,u|x, θ). The weights are
calculated as:

wi =
1

I

p(ŝi, ûi|x, θ)

q(ŝi, ûi)
=

1

I

p(ŝi|ûi,x, θ)p(ûi|x, θ)

q(ŝi, ûi)
, (8)

which then leads to an unbiased gradient estimate. It can be shown
that the above Monte Carlo approximation converges for I → ∞.

3. ALGORITHM

The dictionary learning algorithm is an iterative procedure repeat-
ing the three steps below until convergence.

1. Draw a data point xj at random from the available training
data and draw a set of samples ŝi and ûi from the data-
dependent proposal distribution p(sn|un,x,A)α(un|x).

2. Calculate the weights wi for each of the samples ŝi and ûi.

3. Update the parameters θ using a gradient step with a gradi-
ent approximation found by Monte Carlo integration using
the weighted samples.

Each of the above steps and the required calculations are further
discussed below.

3.1. Proposal distribution and sampling

The used mixture prior enables us to draw samples ŝ conditionally
on û by setting ŝn = 0 if ûn = 0. The non-zero coefficients ŝø are
then Gaussian distributed with variance Λ−1 and mean ΛΛ−1

n,øs̃ø

where s̃ø is the least squares solution to the system x = Aøsø,
Λ = (Λn,ø + λpI) and Λn,ø = λεA

T
ø Aø. Here the subscript

ø refers to a vector or matrix only including the elements associ-
ated with the non-zero coefficients un, e.g. Aø is a matrix with
those columns ofA which are multiplied by non-zero coefficients
sn. These calculations can be executed efficiently if only a few of
the coefficients are non-zero. The distribution p(u|x, θ) cannot be
sampled efficiently so that we resort to Importance Sampling. The
variance of the approximation of the integral in equation 6 then
depends not only on the number of samples used but also on the
similarity between the proposal density and the density of inter-
est. We therefore specify a proposal density which is proportional
to the correlation between each function and the data, hoping that
this is a good first approximation of the true density.

α(un = 1|x) = p(un = 1) ∗ fn(x), (9)

with

fn(x) = 2 ∗ |aT
nx|0.4

maxn |aT
nx| , (10)

where an is the nth column of A. The optimal non-linearity in
fn(x) depends on the unknown distribution p(u|x, θ) and is there-
fore problem specific. The above formulation was used in the ex-
periments below.

3.2. Calculating the weights

Equation 8 can be replaced by:

ŵi =
p(x|ŝi, ûi, θ)p(ŝi|ûi)p(ûi)

p(ŝi|ûi,x, θ)q(ûi)
, (11)

wi =
ŵiP
i ŵi

. (12)

This is much faster to compute but will introduce a bias.
P

i ŵi

will however converge to p(x|θ) as I → ∞ so that the gradient
estimate is unbiased in this limit.

3.3. Updating the parameters

The parameters can be updated in each iteration using a gradient
step. The approximations of the gradients are calculated as fol-
lows:

∆A = λε

IX
i=1

wi(x − Aŝi)s
T
i (13)

∆λε =

IX
i=1

wi

„
M

2λε
− 1

2
(x − Asi)

T (x − Asi)

«
(14)

∆λp =

IX
i=1

wi

„
uT

i ui

2λp
− 1

2
(si)

T (si)

«
(15)

∆λu =

IX
i=1

wi
N

2(1 + e
λu
2)

− 1

2
uT

i ui

!
(16)

V - 214

➡ ➡

4. SHIFT-INVARIANT DICTIONARIES

For time-series analysis it is often desired to learn a dictionary
which leads to a representation that is invariant to shifts of the in-
put signal, i.e. a representation that is shifted by the same amount
in accordance with an input shift. This can be achieved by en-
forcing structure on the dictionary A so that its rows include all
possible shifted versions of each of a set of functions ak [9, 3]. If
we denote the lth shifted version of the kth function as akl and
use skl to denote the associated coefficient, the generative model
can be written as:

x =
X

k∈K,l∈L

aklskl + ε (17)

where x is now the sum of the output of K linear filters with ob-
servation noise.

If x and ak are both in R
M , we can write the gradient update

rule for the set of functions {ak} as [9, 3]:

∆{ak} = λε

IX
i=1

wi(x − Asi) � ski, (18)

where � is the convolution operator.
Our method is applicable to much more general models than

this shift-invariant formulation. However, the shift-invariant model
normally leads to a high number of coefficients s as well as to a
dictionaryA with highly correlated elements, making the problem
particularly difficult to solve. This model will therefore be used in
the following as a testbed for our algorithm.

5. RESULTS

5.1. A toy problem

We first generate test data using a dictionary of five functions (and
all their shifts) as shown with dashed lines in figure 1. The data
was generated with λN = 100, λp = 1 and λu = 9.1902. The
learning rate was slowly decreased using the relationship: µ =
µmax

100
100+iteration

with µmax being an appropriate starting value.
100 samples were drawn in each step from the proposal distribu-
tion in equation 9. As the time required to compute the weights is
proportional to the number of functions selected, it seems advis-
able to set the starting value of λu close to the expected value but
erring on the safe side, i.e. preferring higher values to lower ones,
keeping the number of functions selected in each sample low until
the value has finally converged.

After 1000 iterations the functions shown with solid lines in
figure 1 were found. The correlations between learned functions
and the true functions a to e in the data generating dictionary were
0.837, 0.9756, 0.5697, 0.9907, 0.9836 respectively. The learned
parameters were λ̂ε = 30.48, λ̂p = 0.8515 and λ̂u = 8.96. From
figure 1 it is clear that functions a and c were learned at shifted po-
sitions, which explains the relatively poor correlation between the
learned and original functions given above. Taking the shift into
account, the correlations between the original and learned func-
tions were 0.9365 and 0.9771 for these two functions.

We repeated the same experiment using functions generated
as i.i.d Gaussian signals with unit variance. After 2000 iterations
the learned parameters were λ̂ε = 21.88, λ̂p = 0.89 and λ̂u =
9.49 and the correlations between original and learned functions
were 0.9888, 0.9416, 0.9021, 0.9454 and 0.6033. However, the

Fig. 1. Toy problem results. The learned functions (solid lines) are
very close to the original functions (dotted lines).

last learned function had a higher correlation (0.6742) with the
4th original function.

In both experiments it is evident that the noise scale parameter
has always been underestimated.

5.2. Comparison to previous methods

We measured the time required to calculate the MAP estimate us-
ing 1) the FOCUSS algorithm [1]; and 2) a standard gradient de-
scent algorithm and compare the results to the generation of 100
samples and the calculation of the associated weights using our
approach. In this section we assume that all model parameters (in-
cluding the not necessarily shift-invariant dictionary) are known.

The FOCUSS algorithm was developed using a different prior
formulation to the one used in this paper [1]. For certain parame-
ters it is equivalent to the EM algorithm in [10]. In our experiments
we used the Jeffrey’s hyper-prior as suggested in [10]. For the gra-
dient descent algorithm we use the improper prior p(sn) = s−2

which is the marginalised prior used in the FOCUSS algorithm
when using the Jeffrey’s hyper-prior. This algorithm requires many
more iterations to converge to the MAP estimate, however the
computationally expensive matrix inversion required for the FO-
CUSS algorithm is not necessary.

Both the computation time for the FOCUSS algorithm and for
the gradient descent algorithm depend on the stopping rule em-
ployed. We stopped both algorithms when the change in the op-
timised function was below 0.0001. The FOCUSS algorithm has
a computational complexity of O(M3), the gradient algorithm of
O(MN)while the proposed sampling algorithm only relies on the
average number of non-zero components in the samples.

Figure 2 gives the computation time (using Matlab on a Mac-
intosh G4 1.42 GHz dual processor machine) in seconds (averaged
over 10 runs) for the three algorithms and for different dictionary
sizes. The sizes of the used dictionarysA were (from left to right)
64×480, 128×960, 192×1440, 256×1920 and 320×2400, i.e.
both M and N were increased linearly. The average number of
non-zero coefficients was fixed to 1% so that the average number
of non-zero coefficients was also increased linearly. The diamonds
in figure 2 show the performance of our method, the crosses are the
measurments from the FOCUSS algorithm and the circles are the

V - 215

➡ ➡

Fig. 2. Computation time for the different algorithms for different
dictionary sizes. Top left pannel shows plot zoomed in on y-axis.

measurments from the gradient descent algorithm. The inner pan-
nel in figure 2 shows the graph zoomed in on the y-axis to reveal
the difference between the gradient descent and the Importance
Sampling algorithms.

5.3. Learning piano notes: A real world problem

The speed advantage of the proposed method allowed us to learn
a shift-invarint dictionary (A ∈ R

2048×175104) from a polyphonic
piano recording. If we assume that a piano note will always have
a similar time domain representation, then we should be able to
learn a set of functions representing individual piano notes. This
problem has been studied previously in [3], however in this work
heuristics had to be used to reduce the number of functions in each
iteration in order to use the slower FOCUSS algorithm.

We use a recording of L. van Beethoven’s Bagatelle No. 1
Opus 33 which we summed to mono and resampled at 8000 Hz.
We learned 57 functions (the number of different notes in the record-
ing), all of which converged to periodic functions. In figure 3
we show one of the learned functions. The top panel displays
the time domain representation whilst the lower panel shows the
power spectrum of this function. Here the harmonic structure of
the learned functions is clearly visible. The learned parameters
were λ̂ε = 321, λ̂p = 1.056 and λ̂u = 23.02.

Fig. 3. One of the learned piano notes. The harmonic structure is
clearly visible.

6. CONCLUSION

Bayesian learning can lead to computationally intractable prob-
lems for even simple models. This paper investigated a linear gen-
erative model with parameterised distributions for which both the
dictionary as well as the parameters of the distributions had to be
determined. We also assumed the coefficients s and u to be un-
known, which led to the required integration over the posterior
distribution of these coefficients in the calculation of the gradient
in the parameter space. We have shown experimentally that this
integration can be approximated efficiently using an Importance
Sampling Monte Carlo method. The used stochastic gradient max-
imisation of the parameters effectively averaged over the gradients.
We have shown that the performance of this algorithm is superior
in speed to previously suggested methods which rely on MAP esti-
mation. It should further be noted that the suggested approach can
easily be extended to other prior distributions for the coefficients,
so that different constraints can be implemented without signifi-
cantly changing the algorithm. Finally we have demonstrated that
the method could be used for time-series analysis of real world
data. The speed of the computations allowed the application of
formal Bayesian theory, superior to the previously suggested ad
hoc methods.

7. REFERENCES

[1] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan,
T. Lee, and T. J. Sejnowski, “Dictionary learning algorithms
for sparse representation,” Neural Computation, vol. 15,
pp. 349–396, 2003.

[2] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete
representations,” Neural Computation, no. 12, pp. 337–365,
2000.

[3] T. Blumensath and M. Davies, “Unsupervised learning of
sparse and shift-invariant decompositions of polyphonic mu-
sic,” in IEEE International Conference on Acoustics, Speech,
and Signal Processing, 2004.

[4] B. A. Olshausen and D. J. Field, “Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images,” Nature, no. 381, pp. 607–609, 1995.

[5] S. Abdallah, Towards Music Perception by Redundancy Re-
duction and Unsupervised Learning in Probabilistic Models.
PhD thesis, King’s College London, February 2003.

[6] P. Sallee and B. A. Olshausen, “Learning sparse multi-
scale image representations,” Advances in Neural Informa-
tion Processing Systems, 2003.

[7] H. Robbins and S. Monro, “A stochastic approximation
method,” The Annals of Mathematical Statistics, vol. 22,
no. 3, pp. 400–407, 1951.

[8] C. P. Robert and G. Casella, Monte Carlo Statistical Meth-
ods. Springer texts in statistics, Springer-Verlag, 1999.

[9] H. Wersing, J. Eggert, and E. Körner, “Sparse coding with
invariance constraints,” in Proc. Int. Conf. Artificial Neural
Networks ICANN, pp. 385–392, 2003.

[10] M. A. T. Figueiredo, “Adaptive sparseness for supervised
learning,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 25, pp. 1150–1159, Sept. 2003.

V - 216

➡ ➠

